Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

In a first, scientists used computer simulations to identify the vaccines most likely to be effective against respiratory syncytial virus (RSV), the most common cause of infant severe pneumonia worldwide.

Lisa White

30 November 2016 (Bangkok) – In a first, scientists used computer simulations to identify the vaccines most likely to be effective against respiratory syncytial virus (RSV), the most common cause of infant severe pneumonia worldwide.

Although there is no vaccine yet available for RSV, a viral infection that annually kills up to 200,000 children under five globally, a study published online today in Vaccine suggests that the most effective vaccine would be one that stops RSV from spreading in the general population rather than one that completely prevented disease in RSV-infected individuals.

“This approach radically alters the way we decide which promising vaccine to develop. Choosing which new vaccines to develop from many possible candidates is an expensive process. As using mathematical modelling helps do that more efficiently, we expect that the pharmaceutical industry will use this approach more and more in the future,” says study leader Prof. Lisa White, of the University of Oxford, and Head of Mathematical and Economic MODelling (MAEMOD) at the Mahidol Oxford Tropical Medicine Research Unit (MORU) in Bangkok, Thailand.

“We used mathematical modelling simulations to find the best choices among candidate anti-RSV vaccines, and were surprised to find that the most effective vaccines would not provide solid immunity to reinfection but would reduce the infectiousness of infected individuals, thereby protecting the community at large by reducing the amount of virus in circulation,” explained study co-author Dr Wirichada Pan-Ngum, Deputy Head of Mathematical Modelling at MORU.

Funded by the Wellcome Trust, the study, a collaboration between researchers linked to the universities of Oxford, Warwick and Manchester in the UK and Mahidol University, Thailand, in partnership with global vaccine developer GSK-Biologicals, Belgium, examined which properties RSV vaccines under development would need to have to be most effective in preventing RSV in young children.

The researchers were linked by a new network of mathematical modelers based in the Tropics (TDMODNET). The network is a highly innovative environment which nurtures talented mathematicians from Asia and Africa. “We have proven that true world-class innovation can come from a South-South collaboration of scientists,” said study contributor Dr Tim Kinyanjui, University of Manchester (UK).

Unlike vaccines that currently control common childhood diseases, new vaccines must target diseases with complex and poorly understood immunity. These diseases nevertheless cause a huge amount of suffering and death.

“RSV is the most important cause of infant severe lower respiratory tract disease worldwide, estimated to be responsible for 3 million hospital admissions annually. Occurring in seasonal outbreaks, RSV causes an inflammatory immune response and that constricts airflow, with many children developing pneumonia or bronchiolitis,” says study co-author and major RSV researcher Prof. James Nokes, of the University of Warwick and the Kenya Medical Research Institute (KEMRI)/Wellcome Trust in Kilifi, Kenya.

“New vaccines demand new development pathways and this research is the first to use computer simulation to support the process,” said Prof. Nokes.

Reference

Predicting the relative impacts of maternal and neonatal respiratory syncytial virus (RSV) vaccine target product profiles: A consensus modelling approach. Pan-Ngum W, Kinyanjui T, Kiti M, Taylor S, Toussaint JF, Saralamba S, Van Effelterre T, Nokes DJ and White LJ. DOI: 10.1016/j.vaccine.2016.10.073, Online publication: 14 Dec 2016, in Vaccine, Volume 35, issue 2 (2016)l

Similar stories

Study finds steady increase in WHO-validated artemisinin resistance markers in Asia

From 2002-2018, there has been a steady increase in the places and proportion of infected people reporting validated kelch13 (K13) artemisinin resistance markers, according to a study in The Lancet Microbe. This increase in artemisinin resistance threatens efforts to eliminate malaria in Asia by 2030 — and control efforts in other endemic regions. The authors say that more consistent data collection, over longer time periods in the same areas, and rapid sharing of data are needed to map the spread of resistance and better inform policy decisions.

Global Research on AntiMicrobial resistance (GRAM) project

Antimicrobial resistance (AMR) is responsible for at least 1.27 million deaths per year — with over 97,000 deaths in 2019 in SE Asia alone, according to a study published in The Lancet by the Global Research on AntiMicrobial resistance (GRAM) project, who urged urgent action from policymakers and health communities to avoid further preventable deaths.

Susie, Phaik Yeong, Richard and Paul among new full Oxford professors!

In the 2021 Oxford Recognition of Distinction round, four MORU colleagues were awarded Full Professor title.

Antibiotic accountability: how countries and companies perform

Patients in north Africa and the Middle East are using antibiotics in sharply rising quantities far beyond the global average, raising concerns over the escalating risks of resistance to medicines to treat bacterial infections. Estimated antibiotic consumption for 204 countries between 2000 and 2018 shows a 46 per cent increase in global antibiotic usage, with a surge in nations including India and Vietnam.

New! A learning framework about antimicrobial resistance for children and young people

A downloadable resource for educators, health & research professionals to help develop young peoples’ understanding of AMR and positive actions they can take to mitigate it.

Overusing antibiotics? Find out with Antibiotic Footprint Calculator

To mark WHO World Antimicrobial Awareness Week, 18-24 Nov 2021, and help reduce the overuse of antibiotics, MORU researchers have released a new, easy to use online tool – Antibiotic Footprint Calculator – that could make an important contribution in the fight against antimicrobial resistance (AMR), one of the world’s most significant emerging threats to public health.