Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

No one knows exactly why resistance to malaria drugs always emerges first in this remote western province of Cambodia, nestled in the Cardamom Mountains. “The reasons are as much social as biological,” says malariologist Tom Peto, who is here in this dusty, unremarkable-looking town battling the latest threat to global malaria control: multiple drug–resistant (MDR) malaria.

Young man behing a mosquito nest, in Southeast Asia
Migrant workers such as this man in Pailin, Cambodia, near the border with Thailand, are at especially high risk of contracting malaria. Jeffrey Lau

PAILIN, CAMBODIA—Whatever the reason, this is where it starts. Resistance to chloroquine surfaced here in the 1950s before sweeping through the wider Mekong region and then into India and Africa, causing millions of deaths. Sulfadoxine-pyrimethamine went next, in the 1960s. Mefloquine failed in the 1970s.

Then in late 2008 and 2009 came reports that rocked the malaria world: Artemisinin, the so-called wonder drug that has sent malaria deaths plummeting across the globe over the past decade, was losing its effectiveness here. That sparked global alarm and prompted an ultimately futile emergency plan to contain resistance in Cambodia before the last, best drug was lost.

Now, Pailin is the epicenter of what some say is the greatest threat yet to malaria control: the deadliest malaria parasite, Plasmodium falciparum, has become resistant not only to artemisinin, but to a key partner drug, piperaquine, or PPQ, that is used in combination with artemisinin and is critical to its success. The emergence of this MDR parasite is raising the specter of untreatable malaria in the Mekong region and perhaps beyond.

Similar stories

Congratulations Professor Sir David Warrell, appointed Knight Commander of the Order of St Michael and St George

David Warrell, our founding director, has been appointed by the Queen ‘Knight Commander of the Order of St Michael and St George for services to global Health Research and Clinical Practice’. Please join us in congratulating Sir David on receiving this richly deserved high honour!

Patient recruitment on track in Oxford-led DeTACT trial of safe, effective drug combinations to prevent the spread of artemisinin and multi-drug resistant malaria in Africa

Today is World Malaria Day. The global fight against malaria is at a critical point. No new antimalarial drugs are expected in the near future, and if multi-drug resistant falciparum malaria becomes established in East Africa and spreads to other parts of Africa, millions will be at risk of drug-resistant malaria infection and death. The development of triple artemisinin-based combination therapies aims to prevent or delay the emergence of artemisinin and multi-drug resistant malaria in Africa.

TACT-CV study shows artemether–lumefantrine plus amodiaquine an effective treatment for multidrug-resistant malaria in GMS

A triple artemisinin-based combination therapy (TACT) of artemether-lumefantrine plus amodiaquine (AL+AQ) for uncomplicated falciparum malaria in areas with a high prevalence of artemisinin resistance is a well-tolerated, effective treatment for multidrug-resistant parasites, say a team of MORU-led researchers.

Largest-ever IPD meta-analysis of malaria patients to inform haemoglobin changes

A new malaria study using a very large analysis of pooled individual patient data (IPD) from more than 70,000 patients of all ages, has been published in BMC Medicine by the WorldWide Antimalarial Resistance Network Falciparum Haematology Study Group

Study finds steady increase in WHO-validated artemisinin resistance markers in Asia

From 2002-2018, there has been a steady increase in the places and proportion of infected people reporting validated kelch13 (K13) artemisinin resistance markers, according to a study in The Lancet Microbe. This increase in artemisinin resistance threatens efforts to eliminate malaria in Asia by 2030 — and control efforts in other endemic regions. The authors say that more consistent data collection, over longer time periods in the same areas, and rapid sharing of data are needed to map the spread of resistance and better inform policy decisions.

Global Research on AntiMicrobial resistance (GRAM) project

Antimicrobial resistance (AMR) is responsible for at least 1.27 million deaths per year — with over 97,000 deaths in 2019 in SE Asia alone, according to a study published in The Lancet by the Global Research on AntiMicrobial resistance (GRAM) project, who urged urgent action from policymakers and health communities to avoid further preventable deaths.