Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Abstract HIV affects the function of all lymphocyte populations, including B cells. Phenotypic and functional defects of B cells in HIV-infected adults have been well characterized, but defects in children have not been studied to the same extent. We determined the proportion of B cell subsets and frequencies of Ag-specific memory B cells in peripheral blood from HIV-infected children and healthy controls, using flow cytometry and B cell ELISPOT, respectively. In addition, we measured the quantities and avidities of plasma Abs against various Ags by ELISA. We also determined plasma levels of BAFF and expression of BAFF receptors on B cells. Children with high HIV viremia had increased proportions of activated mature B cells, tissue-like memory B cells and plasmablasts, and low proportions of naive B cells when compared with community controls and children with low HIV viremia, similar to adults infected with HIV. HIV-infected groups had lower proportions of resting memory B cells than did community controls. Notably, high HIV viremia prevented the age-dependent accumulation of class-switched resting memory B cells. HIV-infected children, regardless of the level of viremia, showed lower quantities and avidities of IgG and lower frequencies of memory B cells against Expanded Program on Immunization vaccines. The HIV-infected children had an altered BAFF profile that could have affected their B cell compartment. Therefore, B cell defects in HIV-infected children are similar to those seen in HIV-infected adults. However, control of HIV viremia is associated with normalization of activated B cell subsets and allows age-dependent accumulation of resting memory B cells.

Original publication

DOI

10.4049/jimmunol.1500491

Type

Journal article

Journal

The Journal of Immunology

Publisher

The American Association of Immunologists

Publication Date

01/08/2015

Volume

195

Pages

1082 - 1091