Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Assessment of antibody responses to pneumococcal colonization in early childhood may aid our understanding of protection and inform vaccine antigen selection. Serum samples were collected from mother-infant pairs during a longitudinal pneumococcal colonization study in Burmese refugees. Maternal and cord sera were collected at birth and infants were bled monthly (1-24 months of age). Nasopharyngeal swabs were taken monthly to detect colonization. Serum IgG titres to 27 pneumococcal protein antigens were measured in 2624 sera and IgG to dominant serotypes (6B, 14, 19F, 19A and 23F) were quantified in 864 infant sera. Antibodies to all protein antigens were detectable in maternal sera. Titres to four proteins (LytB, PcpA, PhtD and PhtE) were significantly higher in mothers colonized by pneumococci at delivery. Maternally-derived antibodies to PiuA and Spr0096 were associated with delayed pneumococcal acquisition in infants in univariate, but not multivariate models. Controlling for infant age and previous homologous serotype exposure, nasopharyngeal acquisition of serotypes 19A, 23F, 14 or 19F was associated significantly with a ≥2-fold antibody response to the homologous capsule (OR 12.84, 7.52, 6.52, 5.33; p <0.05). Acquisition of pneumococcal serotypes in the nasopharynx of infants was not significantly associated with a ≥2-fold rise in antibodies to any of the protein antigens studied. In conclusion, nasopharyngeal colonization in young children resulted in demonstrable serum IgG responses to pneumococcal capsules and surface/virulence proteins. However, the relationship between serum IgG and the prevention of, or response to, pneumococcal nasopharyngeal colonization remains complex. Mechanisms other than serum IgG are likely to have a role but are currently poorly understood. ©2013 The Authors. Clinical Microbiology and Infection published by John Wiley & Sons Ltd on behalf of the European Society of Clinical Microbiology and Infectious Diseases.

Original publication

DOI

10.1111/1469-0691.12286

Type

Journal article

Journal

Clinical Microbiology and Infection

Publication Date

01/01/2013

Volume

19