Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Early detection could increase the treatment efficiency and prevent the recurrence of malaria disease. To track and detect malarial sporozoites, novel drug delivery systems have been explored for their ability to target these parasites specifically. This study investigates the potential of micelles to track Plasmodium vivax by targeting the Plasmodium vivax hexose transporter using glucose-based interactions. In vitro experiments were conducted using glucose/SPIO/Nile red (targeted) micelles and methoxy/SPIO/Nile red (nontargeted) micelles, revealing that the targeted micelles exhibited stronger fluorescence with the sporozoites and higher relative R2* values compared to the nontargeted micelles. These findings suggest that targeted micelles could be used for the specific detection of Plasmodium sporozoites using fluorescence imaging and MRI techniques, offering a promising approach for efficient malaria parasite detection.

Original publication

DOI

10.1021/acsabm.3c00596

Type

Journal article

Journal

ACS applied bio materials

Publication Date

12/2023

Volume

6

Pages

5324 - 5332

Addresses

Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand.

Keywords

Animals, Sporozoites, Malaria, Glucose, Magnetic Resonance Imaging, Micelles, Optical Imaging