Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

ObjectivesTo explore the association of recent hospitalization and asymptomatic carriage of multidrug-resistant Enterobacterales (MDRE) and determine the prevailing strains and antibiotic resistance genes in Siem Reap, Cambodia using WGS.MethodsIn this cross-sectional study, faecal samples were collected from two arms: a hospital-associated arm consisted of recently hospitalized children (2-14 years), with their family members; and a community-associated arm comprising children in the matching age group and their family members with no recent hospitalization. Forty-two families in each study arm were recruited, with 376 enrolled participants (169 adults and 207 children) and 290 stool specimens collected from participants. The DNA of ESBL- and carbapenemase-producing Enterobacterales cultured from the faecal samples was subject to WGS on the Illumina NovaSeq platform.ResultsOf the 290 stool specimens, 277 Escherichia coli isolates and 130 Klebsiella spp. were identified on CHROMagar ESBL and KPC plates. The DNA of 276 E. coli (one isolate failed quality control test), 89 Klebsiella pneumoniae, 40 Klebsiella quasipneumoniae and 1 Klebsiella variicola was sequenced. CTX-M-15 was the most common ESBL gene found in E. coli (n = 104, 38%), K. pneumoniae (n = 50, 56%) and K. quasipneumoniae (n = 16, 40%). The prevalence of bacterial lineages and ESBL genes was not associated with any specific arm.ConclusionsOur results demonstrate that MDRE is likely to be endemic within the Siem Reap community. ESBL genes, specifically blaCTX-M, can be found in almost all E. coli commensals, indicating that these genes are continuously propagated in the community through various unknown channels at present.

Original publication

DOI

10.1093/jacamr/dlad067

Type

Journal article

Journal

JAC-antimicrobial resistance

Publication Date

06/2023

Volume

5

Addresses

Saw Swee Hock School of Public Health, Tahir Foundation Building, National University of Singapore, Singapore.