Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BackgroundExtracellular vesicles (EVs) have been broadly studied in malaria for nearly a decade. These vesicles carry various functional biomolecules including RNA families such as microRNAs (miRNA). These EVs-derived microRNAs have numerous roles in host-parasite interactions and are considered promising biomarkers for disease severity. However, this field lacks clinical studies of malaria-infected samples. In this study, EV specific miRNAs were isolated from the plasma of patients from Thailand infected with Plasmodium vivax and Plasmodium falciparum. In addition, it is postulated that these miRNAs were differentially expressed in these groups of patients and had a role in disease onset through the regulation of specific target genes.MethodsEVs were purified from the plasma of Thai P. vivax-infected patients (n = 19), P. falciparum-infected patients (n = 18) and uninfected individuals (n = 20). EV-derived miRNAs were then prepared and abundance of hsa-miR-15b-5p, hsa-miR-16-5p, hsa-let-7a-5p and hsa-miR-150-5p was assessed in these samples. Quantitative polymerase chain reaction was performed, and relative expression of each miRNA was calculated using hsa-miR-451a as endogenous control. Then, the targets of up-regulated miRNAs and relevant pathways were predicted by using bioinformatics. Receiver Operating Characteristic with Area under the Curve (AUC) was then calculated to assess their diagnostic potential.ResultsThe relative expression of hsa-miR-150-5p and hsa-miR-15b-5p was higher in P. vivax-infected patients compared to uninfected individuals, but hsa-let-7a-5p was up-regulated in both P. vivax-infected patients and P. falciparum-infected patients. Bioinformatic analysis revealed that these miRNAs might regulate genes involved in the malaria pathway including the adherens junction and the transforming growth factor-β pathways. All up-regulated miRNAs could potentially be used as disease biomarkers as determined by AUC; however, the sensitivity and specificity require further investigation.ConclusionAn upregulation of hsa-miR-150-5p and hsa-miR-15b-5p was observed in P. vivax-infected patients while hsa-let-7a-5p was up-regulated in both P. vivax-infected and P. falciparum-infected patients. These findings will require further validation in larger cohort groups of malaria patients to fully understand the contribution of these EVs miRNAs to malaria detection and biology.

Original publication

DOI

10.1186/s12936-020-03360-z

Type

Journal article

Journal

Malaria journal

Publication Date

10/08/2020

Volume

19

Addresses

Graduate Programme in Clinical Hematology Sciences, Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand.

Keywords

Humans, Plasmodium falciparum, Plasmodium vivax, Malaria, Falciparum, Malaria, Vivax, MicroRNAs, Adult, Middle Aged, Thailand, Female, Male, Young Adult, Extracellular Vesicles