Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Abstract Background Rapid diagnostic tests (RDTs) have become the most common diagnostic tool for detection of Plasmodium falciparum malaria, in particular in remote areas. RDT blood spots provide a source of parasite DNA for molecular analysis. In this study, the utility of RDTs for molecular analysis and the performance of different methods for whole genome amplification were investigated. Methods Positive P. falciparum RDTs were collected from Kayin, Myanmar from August 2014 to January 2016. The RDT samples were stored for 6 months, 9 months, 20 months, 21 months, and 32 months before DNA extraction and subsequent molecular analysis of P. falciparum kelch 13 (pfkelch13) mutations, P. falciparum multidrug resistance 1 (pfmdr1), and P. falciparum plasmepsin 2 (pfplasmepsin2) gene amplification. In addition, performance of four whole genome amplification (WGA) kits were compared, including REPLI-g®, MALBACTM, PicoPLEX®, and GenomePlex®, for which DNA quantity and quality were compared between original DNA and post-WGA products. Results The proportion of successful amplification of the different molecular markers was similar between blood spots analysed from RDTs stored for 6, 9, 20, 21, or 32 months. Successful amplification was dependent on the molecular markers fragment length (p value < 0.05): 18% for a 1245 bp fragment of pfkelch13, 71% for 364 bp of pfkelch13, 81% for 87 bp of pfmdr1, 81% for 108 bp of pfplasmepsin2. Comparison of the four WGA assay kits showed that REPLI-g®, MALBACTM, and PicoPLEX® increased the quantity of DNA 60 to 750-fold, whereas the ratio of parasite DNA amplification over human DNA was most favourable for MALBAC®. Sequencing results of pfkelch13, P. falciparum chloroquine resistance transporter (pfcrt), P. falciparum dihydrofolate reductase (pfdhfr) and six microsatellite markers assessed from the post-WGA product was the same as from the original DNA. Conclusions Blood spots from RDTs are a good source for molecular analysis of P. falciparum, even after storage up to 32 months. WGA of RDT-derived parasite DNA reliably increase DNA quantity with sufficient quality for molecular analysis of resistance markers.

Original publication

DOI

10.1186/s12936-020-03259-9

Type

Journal article

Journal

Malaria Journal

Publisher

Springer Science and Business Media LLC

Publication Date

12/2020

Volume

19