Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The rapid decline in effectiveness of a widely used anti-malaria drug treatment on the Thailand-Myanmar border is linked to the increasing prevalence of specific mutations in the malaria parasite itself, according to a paper published in The Clinical infectious Disease Journal.

Researchers in a lab

22 June 2016, Mae Sot (Thailand) – The rapid decline in effectiveness of a widely used anti-malaria drug treatment on the Thailand-Myanmar border is linked to the increasing prevalence of specific mutations in the malaria parasite itself, according to a paper published in The Clinical infectious Disease Journal.

The mutations in specific regions of the parasite’s kelch gene – which are genetic markers of artemisinin resistance – were the decisive factor, the authors say, in the selection of parasites that are also resistant to mefloquine. This resulted in growing failure of the widely-used anti-malaria drug combination of mefloquine and artesunate, the first artemisinin combination therapy (ACT) on the Thai-Myanmar border.

Led by Dr. Aung Pyae Phyo of SMRU, the study used data from a 10-year study of 1,005 patients with uncomplicated P. falciparum malaria at Shoklo Malaria Research Unit (SMRU) clinics on the Thai-Myanmar border in northwest Thailand.

“This study demonstrates for the first time that artemisinin resistance leads to failure of the artemisinin partner drug, in this case, mefloquine. This means that the first line artemisinin combination therapy (ACT) introduced here in 1994 has finally fallen to resistance,” says François Nosten, Director of SMRU.

Resistance to artemisinin combination therapy drugs (ACTs) – the frontline treatments against malaria infection – poses a serious threat to the global control and eradication of malaria. If drug resistance spreads from Asia to the African sub-continent, or emerges in Africa independently, as has happened several times before, millions of lives, most of them children under the age of 5 in Africa, will be at risk.

The study shows that, contrary to the view sometimes expressed that resistance to artemisinin is not a direct threat, it is in fact responsible for the rapid demise of the partner drug and the failure of the drug combination, resulting in patients not being cured and further transmission of the malaria parasite.

"The evidence is clear: Artemisinin resistance leads to partner drug resistance and thereby the failure of artemisinin combination treatments,” said Oxford Professor Nicholas White, Chairman of the Mahidol Oxford Tropical Medicine Research Unit (MORU) and chair of the Worldwide Antimalarial Resistance Network (WWARN).

Given the very limited number of effective drugs, it is urgent to eliminate P. falciparum from the areas where it has developed resistance to the artemisinins, said Prof. White: "The spread of artemisinin resistant Plasmodium falciparum is perhaps the greatest threat to our current hopes of eliminating malaria from the world.”

A unit of the Bangkok-based MORU, SMRU is based in the refugee camps and migrant communities along the Thai-Myanmar border. Led by researchers based at SMRU (Thailand), the study was funded with the support of the Wellcome Trust (UK).

Reference:

Pyae Phyo A et al, Declining efficacy of artemisinin combination therapy against P. falciparum malaria on the Thai-Myanmar border (2003-2013): the role of parasite genetic factors, Clinical Infectious Diseases, published online 16 June 2016.

Authors and contributors: A. Pyae Phyo, E.A. Ashley, T.J. Anderson, Z. Bozdech, V.I. Carrara, K. Sriprawat, S. Nair, M.M. White, J. Dziekan, C. Ling, S. Proux, K. Konghahong, A. Jeeyapant, C.J. Woodrow, M. Imwong, R. McGready, K.M. Lwin, N.P. Day, N. J. White and F. Nosten.

Similar stories

All-nighter: staying up to fight malaria

Featured in Nature, Victor Chaumeau collects mosquitoes in Myanmar to better understand how to control malaria.

AMR and scrub typhus among Chiangrai Unit's research priorities

Which infections are most common in the Chiangrai region? How should we treat them and how can we improve diagnostic? Which strategies are most effective in directing antibiotic treatment? Blog by Carlo Perrone, research physician based at the Chiang Rai Clinical Research Unit in Chiangrai, Thailand.

Arjen Dondorp, Peter Horby and Rose McGready elected Academy of Medical Sciences Fellows

"Although it is hard to look beyond the pandemic right now," says President of the Academy of Medical Sciences Professor Dame Anne Johnson, "I want to stress how important it is that the Academy Fellowship represents the widest diversity of biomedical and health sciences. The greatest health advances rely on the findings of many types of research, and on multidisciplinary teams and cross-sector and global collaboration."

Researchers call for access to Ivermectin for young children

Millions of children weighing less than 15kg are currently denied access to Ivermectin treatment due to insufficient safety data being available to support a change to the current label indication. The WorldWide Antimalarial Resistance Network’s new meta-analysis provides evidence that supports removing this barrier and improving treatment equity.

Evidence supports WHO recommendation for primaquine combined with ACTs to block Plasmodium falciparum transmission

Evidence from a new study, initiated by the Primaquine Roll Out Group and conducted at WWARN, supports the World Health Organization (WHO) recommendation for use of 0.25mg/kg dose of primaquine (PQ) combined with artemisinin-based combination therapies (ACT) to block Plasmodium falciparum transmission.

Check-list recommended to improve reporting of microscopy methods and results in malaria studies

A study to explore the variations of how microscopy methods are reported in published malaria studies has recommended standardised procedures should be implemented for methodological consistency and comparability of clinical trial outcomes.