Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The rapid decline in effectiveness of a widely used anti-malaria drug treatment on the Thailand-Myanmar border is linked to the increasing prevalence of specific mutations in the malaria parasite itself, according to a paper published in The Clinical infectious Disease Journal.

22 June 2016, Mae Sot (Thailand) – The rapid decline in effectiveness of a widely used anti-malaria drug treatment on the Thailand-Myanmar border is linked to the increasing prevalence of specific mutations in the malaria parasite itself, according to a paper published in The Clinical infectious Disease Journal.

The mutations in specific regions of the parasite’s kelch gene – which are genetic markers of artemisinin resistance – were the decisive factor, the authors say, in the selection of parasites that are also resistant to mefloquine. This resulted in growing failure of the widely-used anti-malaria drug combination of mefloquine and artesunate, the first artemisinin combination therapy (ACT) on the Thai-Myanmar border.

Led by Dr. Aung Pyae Phyo of SMRU, the study used data from a 10-year study of 1,005 patients with uncomplicated P. falciparum malaria at Shoklo Malaria Research Unit (SMRU) clinics on the Thai-Myanmar border in northwest Thailand.

“This study demonstrates for the first time that artemisinin resistance leads to failure of the artemisinin partner drug, in this case, mefloquine. This means that the first line artemisinin combination therapy (ACT) introduced here in 1994 has finally fallen to resistance,” says François Nosten, Director of SMRU.

Resistance to artemisinin combination therapy drugs (ACTs) – the frontline treatments against malaria infection – poses a serious threat to the global control and eradication of malaria. If drug resistance spreads from Asia to the African sub-continent, or emerges in Africa independently, as has happened several times before, millions of lives, most of them children under the age of 5 in Africa, will be at risk.

The study shows that, contrary to the view sometimes expressed that resistance to artemisinin is not a direct threat, it is in fact responsible for the rapid demise of the partner drug and the failure of the drug combination, resulting in patients not being cured and further transmission of the malaria parasite.

"The evidence is clear: Artemisinin resistance leads to partner drug resistance and thereby the failure of artemisinin combination treatments,” said Oxford Professor Nicholas White, Chairman of the Mahidol Oxford Tropical Medicine Research Unit (MORU) and chair of the Worldwide Antimalarial Resistance Network (WWARN).

Given the very limited number of effective drugs, it is urgent to eliminate P. falciparum from the areas where it has developed resistance to the artemisinins, said Prof. White: "The spread of artemisinin resistant Plasmodium falciparum is perhaps the greatest threat to our current hopes of eliminating malaria from the world.”

A unit of the Bangkok-based MORU, SMRU is based in the refugee camps and migrant communities along the Thai-Myanmar border. Led by researchers based at SMRU (Thailand), the study was funded with the support of the Wellcome Trust (UK).

Reference:

Pyae Phyo A et al, Declining efficacy of artemisinin combination therapy against P. falciparum malaria on the Thai-Myanmar border (2003-2013): the role of parasite genetic factors, Clinical Infectious Diseases, published online 16 June 2016.

Authors and contributors: A. Pyae Phyo, E.A. Ashley, T.J. Anderson, Z. Bozdech, V.I. Carrara, K. Sriprawat, S. Nair, M.M. White, J. Dziekan, C. Ling, S. Proux, K. Konghahong, A. Jeeyapant, C.J. Woodrow, M. Imwong, R. McGready, K.M. Lwin, N.P. Day, N. J. White and F. Nosten.

Similar stories

Evidence supports WHO recommendation for primaquine combined with ACTs to block Plasmodium falciparum transmission

MORU Bangkok Publication Research

Evidence from a new study, initiated by the Primaquine Roll Out Group and conducted at WWARN, supports the World Health Organization (WHO) recommendation for use of 0.25mg/kg dose of primaquine (PQ) combined with artemisinin-based combination therapies (ACT) to block Plasmodium falciparum transmission.

Check-list recommended to improve reporting of microscopy methods and results in malaria studies

MORU Bangkok Publication Research

A study to explore the variations of how microscopy methods are reported in published malaria studies has recommended standardised procedures should be implemented for methodological consistency and comparability of clinical trial outcomes.

The COVID-19 vaccine: do we know enough to end the pandemic?

MORU Bangkok Research

Blog by Rima Shretta. Preliminary efficacy results from three vaccine candidates currently in Phase 3 trials have shown an efficacy of more than 90% against the development of symptomatic COVID-19. While these results are promising, all vaccines are in relatively early stages of testing. A comprehensive and transparent roadmap is urgently needed, to determine how limited doses of the first vaccines to be licensed will be distributed, together with which groups will initially be prioritized.

New study on the risk of Plasmodium vivax parasitaemia after Plasmodium falciparum malaria

MORU Bangkok Publication Research

A new study quantifying the high risk of Plasmodium vivax parasitaemia after treatment of Plasmodium falciparum malaria aims to identify populations in which a policy of universal radical cure, combining artemisinin-based combination therapy with a hypnozoitocidal antimalarial drug, would be most beneficial.

Clare Ling awarded honorary FRCPath

Awards & Appointments SMRU

Dr Clare Ling has been made an honorary Fellow of the Royal College of Pathologists (FRCPath). Currently running Shoklo Malaria Research Unit (SMRU) Microbiology department and supporting the unit’s molecular activities, Clare is a clinical scientist who has worked at SMRU on the Thai-Myanmar border since 2012.

Life at the Thai-Myanmar border through the eyes of a frontline researcher

Public Engagement SMRU

Ethox programme REACH (Resilience, Empowerment and Advocacy in Women's and Children's Health Research) posted a visual research gallery as a Public Engagement project. Six galleries of photos by SMRU's Suphak Nosten depict aspects of migrant workers' daily lives: the Thai-Myanmar border; work; cultural and spiritual values; the often-difficult journeys seeking healthcare; striving for better; and dedicated frontline health workers. Richly coloured, sometimes personal, Suphak’s photography is deeply empathetic and memorable.