Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

IntroductionThe driving pressure (ΔP) has an independent association with outcome in patients with acute respiratory distress syndrome (ARDS). INTELLiVENT-Adaptive Support Ventilation (ASV) is a closed-loop mode of ventilation that targets the lowest work and force of breathing.AimTo compare transpulmonary and respiratory system ΔP between closed-loop ventilation and conventional pressure controlled ventilation in patients with moderate-to-severe ARDS.MethodsSingle-center randomized cross-over clinical trial in patients in the early phase of ARDS. Patients were randomly assigned to start with a 4-h period of closed-loop ventilation or conventional ventilation, after which the alternate ventilation mode was selected. The primary outcome was the transpulmonary ΔP; secondary outcomes included respiratory system ΔP, and other key parameters of ventilation.ResultsThirteen patients were included, and all had fully analyzable data sets. Compared to conventional ventilation, with closed-loop ventilation the median transpulmonary ΔP with was lower (7.0 [5.0-10.0] vs. 10.0 [8.0-11.0] cmH2O, mean difference - 2.5 [95% CI - 2.6 to - 2.1] cmH2O; P = 0.0001). Inspiratory transpulmonary pressure and the respiratory rate were also lower. Tidal volume, however, was higher with closed-loop ventilation, but stayed below generally accepted safety cutoffs in the majority of patients.ConclusionsIn this small physiological study, when compared to conventional pressure controlled ventilation INTELLiVENT-ASV reduced the transpulmonary ΔP in patients in the early phase of moderate-to-severe ARDS. This closed-loop ventilation mode also led to a lower inspiratory transpulmonary pressure and a lower respiratory rate, thereby reducing the intensity of ventilation. Trial registration Clinicaltrials.gov, NCT03211494, July 7, 2017. https://clinicaltrials.gov/ct2/show/NCT03211494?term=airdrop&draw=2&rank=1 .

Original publication

DOI

10.1186/s40635-023-00527-1

Type

Journal article

Journal

Intensive care medicine experimental

Publication Date

07/2023

Volume

11

Addresses

Department of Intensive Care, Reinier de Graaf Hospital, Delft, The Netherlands. l.kruizinga@rdgg.nl.