Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common polymorphism and enzymopathy in humans, affecting approximately 400 million people worldwide. Over 200 point mutations have been identified in g6pd and the molecular mechanisms underlying the severity of G6PD variants differ. We report the detailed functional and structural characterization of 11 recombinant human G6PD variants: G6PD Asahi, G6PD A, G6PD Guadalajara, G6PD Acrokorinthos, G6PD Ananindeua, G6PD A-(202), G6PD Sierra Leone, G6PD A-(680), G6PD A-(968), G6PD Mount Sinai and G6PD No name. G6PD Guadalajara, G6PD Mount Sinai and G6PD No name are inactive variants and, correlating with the observed clinical manifestations, exhibit complete loss of enzyme activity. Protein structural instability, causing a reduction in catalytic efficiency, contributes to the clinical phenotypes of all variants. In double and triple mutants sharing the G6PD A mutation, we observed cooperative interaction between two and three mutations to cause protein dysfunction. The G6PD A (Asn126Asp) mutation exhibits no effect on protein activity and stability, indicating that the additional mutations in these G6PD variants significantly contribute to enzyme deficiency. We provide insight into the molecular basis of G6PD deficiency, which can explain the severity of clinical manifestations observed in individuals with G6PD deficiency.

Original publication

DOI

10.1016/j.ijbiomac.2020.05.026

Type

Journal article

Journal

International journal of biological macromolecules

Publication Date

07/05/2020

Volume

158

Pages

884 - 893

Addresses

Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.