Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A recent multidisciplinary pilot study, originating from LOMWRU and the Medicine Quality Research Group of IDDO and MORU, investigated whether bacterial, plant, fungal and animal DNA in the ingredients and from the environment (eDNA) could be detected from falsified (aka counterfeit) tablets.

Hands holding a multitude of pills © Credit Volodymyr Hryshchenko Unsplash

Collaborating scientists at Flinders University and University of Adelaide, Australia, conducted massively parallel sequencing to compare eDNA signatures between falsified and genuine antimalarials collected in Southeast Asia. They found a much greater diversity of eDNA in the falsified tablets, with differences between the diverse falsified packaging types, and also traces of human DNA.  

They coined the term ‘pharmabiome’ for the genetic signatures found in medicines and suggest that these techniques could be used to help trace the origins of falsified medicines.

This work is being expanded as part of the FORESFA Wellcome Collaborative Award to the Medicine Quality Research Group.

Read the publications 'Environmental DNA as an innovative technique to identify the origins of falsified antimalarial tablets—a pilot study of the pharmabiome' on the Nature website.

Similar stories

Researchers call for antimicrobial resistance surveillance to be improved

The number of studies reporting antimicrobial resistance (AMR) data has increased in Africa, South and South East Asia according to new research in the International Journal of Infectious Diseases.

Constant genetic surveillance necessary to keep multidrug-resistant malaria parasite strains in check, study finds

Continually monitoring malaria parasite populations is necessary to prevent outbreaks of previously dormant multidrug-resistant malaria strains, say University of Oxford researchers. Multidrug-resistant malaria parasite strains can rapidly grow or collapse in response to public health policy changes, say the researchers in a study published today in The Lancet.

Bacterial infections linked to one in eight global deaths, according to GRAM study

Data showing 7.7 million deaths from 33 bacterial infections can guide measures to strengthen health systems, particularly in low-income settings

Enhanced vaccination against Japanese encephalitis virus could reduce encephalitis prevalence by one third in SE Asia

Encephalitis is a worldwide public health issue, with a substantially high burden among children in Southeast Asia. A large study of the causes of childhood encephalitis in SE Asia suggests that enhanced and effective vaccination against the Japanese encephalitis virus alone could reduce encephalitis prevalence by one third.

Laos’ first Pint of Science: warty newts, COVID, AI for Instagram, and more!

Organised by a grass-root community of thousands of scientists across the world, Pint of Science 2022 allows researchers in 25 countries and over 800 cities to share their latest findings with lay folk in interesting, informal settings. Lao PDR joined the global Pint of Science family on Monday 9 May, when the first-ever Pint of Science Laos kicked off!

Largest-ever IPD meta-analysis of malaria patients to inform haemoglobin changes

A new malaria study using a very large analysis of pooled individual patient data (IPD) from more than 70,000 patients of all ages, has been published in BMC Medicine by the WorldWide Antimalarial Resistance Network Falciparum Haematology Study Group