Search results
Found 7606 matches for
Thailand and SE Asia’s first Pint of Science Festival kicked Pint-of-Science1 off on Mon 15 May with a look at Killer Bugs: Disease, Detection and Destruction and an enthusiastic reception from over 50 attendees that included scientists from MORU and other institutions, business people with a background in science and students.
Genotype-phenotype association and biochemical analyses of glucose-6-phosphate dehydrogenase variants: Implications for the hemolytic risk of using 8-aminoquinolines for radical cure.
Background: Plasmodium vivax remains the malaria species posing a major threat to human health worldwide owing to its relapse mechanism. Currently, the only drugs of choice for radical cure are the 8-aminoquinolines (primaquine and tafenoquine), which are capable of killing hypnozoites and thus preventing P. vivax relapse. However, the therapeutic use of primaquine and tafenoquine is restricted because these drugs can cause hemolysis in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency. This study aimed to assess and understand the hemolytic risk of using 8-aminoquinolines for radical treatment in a malaria endemic area of Thailand. Methods: The prevalence of G6PD deficiency was determined using a quantitative test in 1,125 individuals. Multiplexed high-resolution meltinging (HRM) assays were developed and applied to detect 12 G6PD mutations. Furthermore, biochemical and structural characterization of G6PD variants was carried out to understand the molecular basis of enzyme deficiency. Results: The prevalence of G6PD deficiency was 6.76% (76/1,125), as assessed by a phenotypic test. Multiplexed HRM assays revealed G6PD Mahidol in 15.04% (77/512) of males and 28.38% (174/613) of females, as well as G6PD Aures in one female. G6PD activity above the 30% cut-off was detected in those carrying G6PD Mahidol, even in hemizygous male individuals. Two variants, G6PD Murcia Oristano and G6PD Songklanagarind + Viangchan, were identified for the first time in Thailand. Biochemical characterization revealed that structural instability is the primary cause of enzyme deficiency in G6PD Aures, G6PD Murcia Oristano, G6PD Songklanagarind + Viangchan, and G6PD Chinese 4 + Viangchan, with double G6PD mutations causing more severe enzyme deficiency. Conclusion: In western Thailand, up to 22% of people may be ineligible for radical cure. Routine qualitative tests may be insufficient for G6PD testing, so quantitative tests should be implemented. G6PD genotyping should also be used to confirm G6PD status, especially in female individuals suspected of having G6PD deficiency. People with double G6PD mutations are more likely to have hemolysis than are those with single G6PD mutations because the double mutations significantly reduce the catalytic activity as well as the structural stability of the protein.
EPI-Net One Health reporting guideline for antimicrobial consumption and resistance surveillance data: a Delphi approach
Strategic and standardised approaches to analysis and reporting of surveillance data are essential to inform antimicrobial resistance (AMR) mitigation measures, including antibiotic policies. Targeted guidance on linking full-scale AMR and antimicrobial consumption (AMC)/antimicrobial residues (AR) surveillance data from the human, animal, and environmental sectors is currently needed. This paper describes the initiative whereby a multidisciplinary panel of experts (56 from 20 countries—52 high income, 4 upper middle or lower income), representing all three sectors, elaborated proposals for structuring and reporting full-scale AMR and AMC/AR surveillance data across the three sectors. An evidence-supported, modified Delphi approach was adopted to reach consensus among the experts for dissemination frequency, language, and overall structure of reporting; core elements and metrics for AMC/AR data; core elements and metrics for AMR data. The recommendations can support multisectoral national and regional plans on antimicrobials policy to reduce resistance rates applying a One Health approach.
Need for a Standardized Translational Drug Development Platform: Lessons Learned from the Repurposing of Drugs for COVID-19
In the absence of drugs to treat or prevent COVID-19, drug repurposing can be a valuable strategy. Despite a substantial number of clinical trials, drug repurposing did not deliver on its promise. While success was observed with some repurposed drugs (e.g., remdesivir, dexamethasone, tocilizumab, baricitinib), others failed to show clinical efficacy. One reason is the lack of clear translational processes based on adequate preclinical profiling before clinical evaluation. Combined with limitations of existing in vitro and in vivo models, there is a need for a systematic approach to urgent antiviral drug development in the context of a global pandemic. We implemented a methodology to test repurposed and experimental drugs to generate robust preclinical evidence for further clinical development. This translational drug development platform comprises in vitro, ex vivo, and in vivo models of SARS-CoV-2, along with pharmacokinetic modeling and simulation approaches to evaluate exposure levels in plasma and target organs. Here, we provide examples of identified repurposed antiviral drugs tested within our multidisciplinary collaboration to highlight lessons learned in urgent antiviral drug development during the COVID-19 pandemic. Our data confirm the importance of assessing in vitro and in vivo potency in multiple assays to boost the translatability of pre-clinical data. The value of pharmacokinetic modeling and simulations for compound prioritization is also discussed. We advocate the need for a standardized translational drug development platform for mild-to-moderate COVID-19 to generate preclinical evidence in support of clinical trials. We propose clear prerequisites for progression of drug candidates for repurposing into clinical trials. Further research is needed to gain a deeper understanding of the scope and limitations of the presented translational drug development platform.
Drug resistance of Plasmodium falciparum and Plasmodium vivax isolates in Indonesia.
This review article aims to investigate the genotypic profiles of Plasmodium falciparum and Plasmodium vivax isolates collected across a wide geographic region and their association with resistance to anti-malarial drugs used in Indonesia. A systematic review was conducted between 1991 and date. Search engines, such as PubMed, Science Direct, and Google Scholar, were used for articles published in English and Indonesian to search the literature. Of the 471 initially identified studies, 61 were selected for 4316 P. falciparum and 1950 P. vivax individual infections. The studies included 23 molecular studies and 38 therapeutic efficacy studies. K76T was the most common pfcrt mutation. K76N (2.1%) was associated with the haplotype CVMNN. By following dihydroartemisinin-piperaquine (DHA-PPQ) therapy, the mutant pfmdr1 alleles 86Y and 1034C were selected. Low prevalence of haplotype N86Y/Y184/D1246Y pfmdr1 reduces susceptibility to AS-AQ. SNP mutation pvmdr1 Y976F reached 96.1% in Papua and East Nusa Tenggara. Polymorphism analysis in the pfdhfr gene revealed 94/111 (84.7%) double mutants S108N/C59R or S108T/A16V in Central Java. The predominant pfdhfr haplotypes (based on alleles 16, 51, 59,108, 164) found in Indonesia were ANCNI, ANCSI, ANRNI, and ANRNL. Some isolates carried A437G (35.3%) or A437G/K540E SNPs (26.5%) in pfdhps. Two novel pfdhps mutant alleles, I588F/G and K540T, were associated with six pfdhps haplotypes. The highest prevalence of pvdhfr quadruple mutation (F57L/S58R/T61M/S117T) (61.8%) was detected in Papua. In pvdhps, the only polymorphism before and after 2008 was 383G mutation with 19% prevalence. There were no mutations in the pfk13 gene reported with validated and candidate or associated k13 mutation. An increased copy number of pfpm2, associated with piperaquine resistance, was found only in cases of reinfection. Meanwhile, mutation of pvk12 and pvpm4 I165V is unlikely associated with ART and PPQ drug resistance. DHA-PPQ is still effective in treating uncomplicated falciparum and vivax malaria. Serious consideration should be given to interrupt local malaria transmission and dynamic patterns of resistance to anti-malarial drugs to modify chemotherapeutic policy treatment strategies. The presence of several changes in pfk13 in the parasite population is of concern and highlights the importance of further evaluation of parasitic ART susceptibility in Indonesia.
Ten-year persistence and evolution of Plasmodium falciparum antifolate and anti-sulfonamide resistance markers pfdhfr and pfdhps in three Asian countries.
BackgroundThe amplification of GTP cyclohydrolase 1 (pfgch1) in Plasmodium falciparum has been linked to the upregulation of the pfdhfr and pfdhps genes associated with resistance to the antimalarial drug sulfadoxine-pyrimethamine. During the 1990s and 2000s, sulfadoxine-pyrimethamine was withdrawn from use as first-line treatment in southeast Asia due to clinical drug resistance. This study assessed the temporal and geographic changes in the prevalence of pfdhfr and pfdhps gene mutations and pfgch1 amplification a decade after sulfadoxine-pyrimethamine had no longer been widely used.MethodsA total of 536 P. falciparum isolates collected from clinical trials in Thailand, Cambodia, and Lao PDR between 2008 and 2018 were assayed. Single nucleotide polymorphisms of the pfdhfr and pfdhps genes were analyzed using nested PCR and Sanger sequencing. Gene copy number variations of pfgch1 were investigated using real-time polymerase chain reaction assay.ResultsSequences of the pfdhfr and pfdhps genes were obtained from 96% (517/536) and 91% (486/536) of the samples, respectively. There were 59 distinct haplotypes, including single to octuple mutations. The two major haplotypes observed included IRNI-AGEAA (25%) and IRNL-SGKGA (19%). The sextuple mutation IRNL-SGKGA increased markedly over time in several study sites, including Pailin, Preah Vihear, Ratanakiri, and Ubon Ratchathani, whereas IRNI-AGEAA decreased over time in Preah Vihear, Champasak, and Ubon Ratchathani. Octuple mutations were first observed in west Cambodia in 2011 and subsequently in northeast Cambodia, as well as in southern Laos by 2018. Amplification of the pfgch1 gene increased over time across the region, particularly in northeast Thailand close to the border with Laos and Cambodia.ConclusionDespite the fact that SP therapy was discontinued in Thailand, Cambodia, and Laos decades ago, parasites retained the pfdhfr and pfdhps mutations. Numerous haplotypes were found to be prevalent among the parasites. Frequent monitoring of pfdhfr and pfdhps in these areas is required due to the relatively rapid evolution of mutation patterns.
Development of Weight and Age-based Dosing of Daily Primaquine for Radical Cure of Vivax Malaria
Abstract Background In many endemic areas, Plasmodium vivax malaria is predominantly a disease of young adults and children. International recommendations for radical cure recommend fixed target doses of 0.25 or 0.5 mg/kg/day of primaquine for 14 days in glucose-6-phosphate dehydrogenase normal patients. As for many antimalarial drugs there is evidence that children have lower exposures than adults for the same weight adjusted dose. We, therefore, aimed to develop 14-day weight-based and age-based primaquine regimens against high-frequency relapsing tropical P. vivax. Methods The recommended adult target dose of 0.5 mg/kg/day (30 mg in a 60 kg patient) is highly efficacious against tropical P. vivax and was assumed to produce optimal drug exposure. Primaquine doses were calculated using allometric scaling to derive a weight-based primaquine regimen over a weight range from 5 to 100 kg. Growth curves were constructed from an anthropometric database of 53,467 individuals from the Greater Mekong Subregion to define weight-for-age relationships. The median age associated with each weight was used to derive an age-based dosing regimen from the weight-based regimen.Results The proposed weight-based regimen had 5 dosing bands: (i) 5 – 7 kg, 5 mg, resulting in 0.71 – 1.0 mg/kg/day; (ii) 8 – 16 kg, 7.5 mg, 0.47 – 0.94 mg/kg/day; (iii) 17 – 40 kg, 15 mg, 0.38 – 0.88 mg/kg/day; (iv) 41 – 80 kg, 30 mg, 0.37 – 0.73 mg/kg/day; and (v) 81 – 100 kg, 45 mg, 0.45 – 0.56 mg/kg/day. The age-based regimen had 4 dosing bands: 6 – 11 months, 5 mg, 0.43 – 1.0 mg/kg/day; (ii) 1 – 5 years, 7.5 mg, 0.35 – 1.25 mg/kg/day; (iii) 6 – 14 years, 15 mg, 0.30 – 1.36 mg/kg/day; and (iv) ≥ 15 years, 30 mg, 0.35 – 1.07 mg/kg/day.Conclusion The proposed weight-based regimens showed less variability around the optimal dose within each dosing band compared to the age-based regimen and is preferred. Increased dose accuracy could be achieved by additional dosing bands. Pharmacokinetic data in small children are needed urgently to inform the proposed regimen.
Development of weight and age-based dosing of daily primaquine for radical cure of vivax malaria
Abstract Background In many endemic areas, Plasmodium vivax malaria is predominantly a disease of young adults and children. International recommendations for radical cure recommend fixed target doses of 0.25 or 0.5 mg/kg/day of primaquine for 14 days in glucose-6-phosphate dehydrogenase normal patients of all ages. However, for many anti-malarial drugs, including primaquine, there is evidence that children have lower exposures than adults for the same weight-adjusted dose. The aim of the study was to develop 14-day weight-based and age-based primaquine regimens against high-frequency relapsing tropical P. vivax. Methods The recommended adult target dose of 0.5 mg/kg/day (30 mg in a 60 kg patient) is highly efficacious against tropical P. vivax and was assumed to produce optimal drug exposure. Primaquine doses were calculated using allometric scaling to derive a weight-based primaquine regimen over a weight range from 5 to 100 kg. Growth curves were constructed from an anthropometric database of 53,467 individuals from the Greater Mekong Subregion (GMS) to define weight-for-age relationships. The median age associated with each weight was used to derive an age-based dosing regimen from the weight-based regimen. Results The proposed weight-based regimen has 5 dosing bands: (i) 5–7 kg, 5 mg, resulting in 0.71–1.0 mg/kg/day; (ii) 8–16 kg, 7.5 mg, 0.47–0.94 mg/kg/day; (iii) 17–40 kg, 15 mg, 0.38–0.88 mg/kg/day; (iv) 41–80 kg, 30 mg, 0.37–0.73 mg/kg/day; and (v) 81–100 kg, 45 mg, 0.45–0.56 mg/kg/day. The corresponding age-based regimen had 4 dosing bands: 6–11 months, 5 mg, 0.43–1.0 mg/kg/day; (ii) 1–5 years, 7.5 mg, 0.35–1.25 mg/kg/day; (iii) 6–14 years, 15 mg, 0.30–1.36 mg/kg/day; and (iv) ≥ 15 years, 30 mg, 0.35–1.07 mg/kg/day. Conclusion The proposed weight-based regimen showed less variability around the primaquine dose within each dosing band compared to the age-based regimen and is preferred. Increased dose accuracy could be achieved by additional dosing bands for both regimens. The age-based regimen might not be applicable to regions outside the GMS, which must be based on local anthropometric data. Pharmacokinetic data in small children are needed urgently to inform the proposed regimens.
The oral protease inhibitor (PF-07321332) protects Syrian hamsters against infection with SARS-CoV-2 variants of concern
AbstractThere is an urgent need for potent and selective antivirals against SARS-CoV-2. Pfizer developed PF-07321332 (PF-332), a potent inhibitor of the viral main protease (Mpro, 3CLpro) that can be dosed orally and that is in clinical development. We here report that PF-332 exerts equipotent in vitro activity against the four SARS-CoV-2 variants of concerns (VoC) and that it can completely arrest replication of the alpha variant in primary human airway epithelial cells grown at the air-liquid interface. Treatment of Syrian Golden hamsters with PF-332 (250 mg/kg, twice daily) completely protected the animals against intranasal infection with the beta (B.1.351) and delta (B.1.617.2) SARS-CoV-2 variants. Moreover, treatment of SARS-CoV-2 (B.1.617.2) infected animals with PF-332 completely prevented transmission to untreated co-housed sentinels.
Efficacy of ultra-short, response-guided sofosbuvir and daclatasvir therapy for Hepatitis C: a single arm mechanistic pilot study
Background: WHO has called for research into predictive factors for selecting persons who could be successfully treated with shorter durations of direct acting antiviral (DAA) therapy for Hepatitis C. We evaluated early virological response as a means of shortening treatment and explored host, viral and pharmacokinetic contributors to treatment outcome. Methods: Duration of sofosbuvir and daclatasvir (SOF/DCV) was determined according to day 2 (D2) virologic response for HCV genotype (gt) 1- or 6-infected adults in Vietnam with mild liver disease. Participants received 4- or 8-weeks treatment according to whether D2 HCV RNA was above or below 500 IU/ml (standard duration is 12 weeks). Primary endpoint was sustained virological response (SVR12). Those failing therapy were retreated with 12 weeks SOF/DCV. Host IFNL4 genotype and viral sequencing was performed at baseline, with repeat viral sequencing if virological rebound was observed. Levels of SOF, its inactive metabolite GS-331007 and DCV were measured on day 0 and 28. Results: Of 52 adults enrolled, 34 received 4 weeks SOF/DCV, 17 got 8 weeks and one withdrew. SVR12 was achieved in 21/34 (62%) treated for 4 weeks, and 17/17 (100%) treated for 8 weeks. Overall, 38/51 (75%) were cured with first-line treatment (mean duration 37 days). Despite a high prevalence of putative NS5A-inhibitor resistance associated substitutions (RAS), all first-line treatment failures cured after retreatment (13/13). We found no evidence treatment failure was associated with host IFNL4 genotype, viral subtype, baseline RAS, SOF or DCV levels. Conclusions: Shortened SOF/DCV therapy, with retreatment if needed, reduces DAA use in patients with mild liver disease, while maintaining high cure rates. D2 virologic response alone does not adequately predict SVR12 with 4 weeks treatment. Funding: Funded by the Medical Research Council (grant MR/P025064/1) and The Global Challenges Research Fund (Wellcome Trust Grant 206/296/Z/17/Z).) Clinical trial number: ISRCTN17100273
Targeted amplicon deep sequencing of ama1 and mdr1 to track within-host P. falciparum diversity throughout treatment in a clinical drug trial
Introduction: Antimalarial therapeutic efficacy studies are routinely conducted in malaria-endemic countries to assess the effectiveness of antimalarial treatment strategies. Targeted amplicon sequencing (AmpSeq) uniquely identifies and quantifies genetically distinct parasites within an infection. In this study, AmpSeq of Plasmodium falciparum apical membrane antigen 1 (ama1), and multidrug resistance gene 1 (mdr1), were used to characterise the complexity of infection (COI) and drug-resistance genotypes, respectively. Methods: P. falciparum-positive samples were obtained from a triple artemisinin combination therapy clinical trial conducted in 30 children under 13 years of age between 2018 and 2019 in Kilifi, Kenya. Nine of the 30 participants presented with recurrent parasitemia from day 26 (624h) onwards. The ama1 and mdr1 genes were amplified and sequenced, while msp1, msp2 and glurp data were obtained from the original clinical study. Results: The COI was comparable between ama1 and msp1, msp2 and glurp; overall, ama1 detected more microhaplotypes. Based on ama1, a stable number of microhaplotypes were detected throughout treatment until day 3. Additionally, a recrudescent infection was identified with an ama1 microhaplotype initially observed at 30h and later in an unscheduled follow-up visit. Using the relative frequencies of ama1 microhaplotypes and parasitemia, we identified a fast (<1h) and slow (>5h) clearing microhaplotype. As expected, only two mdr1 microhaplotypes (NF and NY) were identified based on the combination of amino acid polymorphisms at codons 86 and 184. Conclusions: This study highlights AmpSeq as a tool for highly-resolution tracking of parasite microhaplotypes throughout treatment and can detect variation in microhaplotype clearance estimates. AmpSeq can also identify slow-clearing microhaplotypes, a potential early sign of selection during treatment. Consequently, AmpSeq has the capability of improving the discriminatory power to distinguish recrudescences from reinfections accurately.
Host Biomarkers Reflect Prognosis in Patients Presenting With Moderate Coronavirus Disease 2019: A Prospective Cohort Study.
Efficient resource allocation is essential for effective pandemic response. We measured host biomarkers in 420 patients presenting with moderate coronavirus disease 2019 and found that different biomarkers predict distinct clinical outcomes. Interleukin (IL)-1ra, IL-6, IL-10, and IL-8 exhibit dose-response relationships with subsequent disease progression and could potentially be useful for multiple use-cases.