Mermithid nematodes found in adult Anopheles from southeastern Senegal.
Kobylinski KC., Sylla M., Black W., Foy BD.
BackgroundOver two dozen mermithid nematodes have been described parasitizing mosquitoes worldwide, however, only two species were found in Africa. Mermithid nematodes kill their mosquito host upon emergence, which suggests that they could be developed as biological control agents of mosquitoes. Both Romanomermis culicivorax and Romanomermis iyengari have been reared for mass release to control numerous Anopheles species vector populations, and in one instance this may have led to reduced malaria prevalence in a human population.MethodsAnopheles mosquitoes were collected during a malaria study in southeastern Senegal. Two different adult blood fed mosquitoes had a single mermithid nematode emerge from their anus while they were being held post-capture. Primers from the 18 S rDNA were developed to sequence nematode DNA and screen mosquitoes for mermithid DNA. 18 S rDNA from the Senegalese mermithid and other mermithid entries in GenBank were used to create a Maximum Parsimony tree of the Mermithidae family.ResultsThe mermithid was present in 1.8% (10/551) of the sampled adult Anopheles species in our study area. The mermithid was found in An. gambiae s.s., An. funestus, and An. rufipes from the villages of Ndebou, Boundoucondi, and Damboucoye. Maximum parsimony analysis confirmed that the nematode parasites found in Anopheles were indeed mermithid parasites, and of the mermithid sequences available in GenBank, they are most closely related to Strelkovimermis spiculatus.ConclusionsTo our knowledge, this is the first report of mermithids from adult Anopheles mosquitoes in Senegal. The mermithid appears to infect Anopheles mosquitoes that develop in diverse larval habitats. Although maximum parsimony analysis determined the mermithid was closely related to Strelkovimermis spiculatus, several characteristics of the mermithid were more similar to the Empidomermis genus. Future mermithid isolations will hopefully allow: formal taxonomic identification, laboratory colonization, determination of life history traits and species specificity, and characterize its usefulness as a biological control agent.