Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Recently there have been calls for the eradication of malaria and the elimination of soil-transmitted helminths (STHs). Malaria and STHs overlap in distribution, and STH infections are associated with increased risk for malaria. Indeed, there is evidence that suggests that STH infection may facilitate malaria transmission. Malaria and STH coinfection may exacerbate anemia, especially in pregnant women, leading to worsened child development and more adverse pregnancy outcomes than these diseases would cause on their own. Ivermectin mass drug administration (MDA) to humans for malaria parasite transmission suppression is being investigated as a potential malaria elimination tool. Adding albendazole to ivermectin MDAs would maximize effects against STHs. A proactive, integrated control platform that targets malaria and STHs would be extremely cost-effective and simultaneously reduce human suffering caused by multiple diseases. This paper outlines the benefits of adding albendazole to ivermectin MDAs for malaria parasite transmission suppression.

Original publication

DOI

10.4269/ajtmh.14-0187

Type

Journal article

Journal

The American journal of tropical medicine and hygiene

Publication Date

10/2014

Volume

91

Pages

655 - 662

Addresses

Entomology Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland; Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado; Research School of Population Health, The Australian National University, Canberra, Australian Capitol Territory, Australia; Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland; Deployed Warfighter Protection Program, Armed Forces Pest Management Board, Silver Spring, Maryland kobylinskikevin@yahoo.com.

Keywords

Animals, Humans, Anopheles, Trichuris, Ascaris lumbricoides, Plasmodium falciparum, Malaria, Falciparum, Albendazole, Ivermectin, Soil, Antiparasitic Agents, Drug Therapy, Combination, Insect Vectors, Drug Synergism