Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Scrub typhus is a mite-borne disease caused by a Gram-negative obligately intracellular bacillus, Orientia tsutsugamushi. The disease is endemic in the Asia–Australia–Pacific region, including Thailand. Scrub typhus generally manifests as acute undifferentiated febrile fever along with myalgia, rash, and lymphadenopathy. An eschar can be a valuable diagnostic clue, but this skin lesion may be missed in some patients. The disease symptoms resemble those of other febrile illnesses such as leptospirosis, typhoid, murine typhus, malaria, and dengue fever, making a laboratory diagnosis necessary for the definitive diagnosis. In this study, we expressed a recombinant protein derived from 56-kDa type-specific antigen of O. tsutsugamushi Karp serotype and tested its ability to detect and differentiate scrub typhus infection. IgM and IgG antibodies were determined in sera from scrub typhus (n = 92) and other febrile illness patients (murine typhus (n = 25), melioidosis (n = 36), leptospirosis (n = 42), and dengue (n = 35)) from Thailand. Sensitivities of 87.0% and 59.8% with a specified assay cut-off were obtained for IgM and IgG indirect ELISAs, respectively, with a specificity of 100% in both tests. The sensitivity was increased to 95.7% when a combination of IgM and IgG ELISAs results was considered. Our study suggested a potential of the 56-kDa recombinant protein for further development and evaluation for use in scrub typhus serodiagnosis.

Original publication




Journal article


Tropical Medicine and Infectious Disease



Publication Date





10 - 10