Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Changes in lipid levels/profiles can reflect health status and diseases. Urinary lipidomics, thus, has a great potential in clinical diagnostics/prognostics. Previously, only chloroform and methanol were used for extracting lipids from the urine. The present study aimed to optimize lipid extraction and examine differential lipid classes obtained by various extraction protocols. Urine samples were collected from eight healthy individuals and then pooled. Lipids were extracted by six solvent protocols, including (i) chloroform/methanol (1:1, v/v), (ii) chloroform/methanol (2:1, v/v), (iii) hexane/isopropanol (3:2, v/v), (iv) chloroform, (v) diethyl ether, and (vi) hexane. Lipid profiles of the six extracts were acquired by MALDI-TOF mass spectrometry (MS) and some lipid classes were verified by LIFT-TOF/TOF MS/MS. The data revealed that phosphatidylglycerol (PG) and phosphatidylinositol (PI) could be detected by all six protocols. However, phosphatidylcholine (PC) and sphingomyelin (SM) were detectable only by protocols (i)-(iv), whereas phosphatidylserine (PS) was detectable only by protocols (iii)-(vi), and phosphatidylethanolamine (PE) was detectable only by protocols (v)-(vi). In summary, we have demonstrated differential lipidome profiles yielded by different extraction protocols. These data can serve as an important source for selection of an appropriate extraction method for further highly focused studies on particular lipid classes in the human urine.

Original publication

DOI

10.1038/srep33756

Type

Journal article

Journal

Scientific reports

Publication Date

09/2016

Volume

6

Addresses

Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital; and Center for Research in Complex Systems Science (CRCSS), Mahidol University, Bangkok, Thailand.

Keywords

Humans, Lipids, Solvents, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization, Female, Male