Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Malaria is a major health threat caused by Plasmod-ium parasites that infect the red blood cells. Two predominant types of Plasmodium parasites are Plasmodium vivax (P. vivax) and Plasmodium falciparum (P. falciparum). Diagnosis of malaria typically involves visual microscopy examination of blood smears for malaria parasites. This is a tedious, error-prone visual inspection task requiring microscopy expertise which is often lacking in resource-poor settings. To address these problems, attempts have been made in recent years to automate malaria diagnosis using machine learning approaches. Several challenges need to be met for a machine learning approach to be successful in malaria diagnosis. Microscopy images acquired at different sites often vary in color, contrast, and consistency caused by different smear preparation and staining methods. Moreover, touching and overlapping cells complicate the red blood cell detection process, which can lead to inaccurate blood cell counts and thus incorrect parasitemia calculations. In this work, we propose a red blood cell detection and extraction framework to enable processing and analysis of single cells for follow-up processes like counting infected cells or identifying parasite species in thin blood smears. This framework consists of two modules: a cell detection module and a cell extraction module. The cell detection module trains a modified Channel-wise Feature Pyramid Network for Medicine (CFPNet-M) deep learning network that takes the green channel of the image and the color-deconvolution processed image as inputs, and learns a truncated distance transform image of cell annotations. CFPNet-M is chosen due to its low resource requirements, while the distance transform allows achieving more accurate cell counts for dense cells. Once the cells are detected by the network, the cell extraction module is used to extract single cells from the original image and count the number of cells. Our preliminary results based on 193 patients (including 148 P. Falciparum infected patients, and 45 uninfected patients) show that our framework achieves cell count accuracy of 92.2%.

Original publication




Conference paper

Publication Date