Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.
Skip to main content

<jats:p>The extent to which evolution is constrained by the rate at which horizontal gene transfer (HGT) allows DNA to move between genetic lineages is an open question, which we address in the context of antibiotic resistance in <jats:italic>Streptococcus pneumoniae</jats:italic>. We analyze microbiological, genomic and epidemiological data from the largest-to-date sequenced pneumococcal carriage study in 955 infants from a refugee camp on the Thailand-Myanmar border. Using a unified framework, we simultaneously test prior hypotheses on rates of HGT and a key evolutionary covariate (duration of carriage) as determinants of resistance frequencies. We conclude that in this setting, there is only weak evidence for the rate of HGT playing a role in the evolutionary dynamics of resistance. Instead, observed resistance frequencies are best explained as the outcome of selection acting on a pool of variants, irrespective of the rate at which resistance determinants move between genetic lineages.</jats:p>

Original publication

DOI

10.1101/656751

Type

Journal article

Publisher

Cold Spring Harbor Laboratory

Publication Date

11/06/2019