Dr Patrick Musicha

Research Area: Bioinformatics & Stats (inc. Modelling and Computational Biology)
Technology Exchange: Bioinformatics and Computational biology
Scientific Themes: Tropical Medicine & Global Health and Genetics & Genomics

Patrick Musicha is a postdoctoral research fellow based at the Mahidol-Oxford Tropical Medicine Research Unit in Bangkok, Thailand. He did his PhD at the Institute of Infection and Global Health, University of Liverpool, where he investigated genomic epidemiology of antimicrobial resistance in Malawi, in collaboration with the Malawi-Liverpool-Wellcome Trust and the Wellcome Trust Sanger Institute.

Patrick aims at understanding the evolution and spread of antimicrobial resistance with a particular focus on ESBL producing Enterobacteriaceae. He uses bioinformatics and mathematical modelling approaches on epidemiological and whole genome sequence data to describe genomic epidemiology and transmission dynamics of ESBL producing Enterobacteriaceae. His current work seeks to understand carriage and transmission dynamics of ESBL producing Enterobacteriaceae in Europe and South East Asia.

Name Department Institution Country
Dr Nicholas A Feasey Liverpool School of Tropical Medicine United Kingdom
Professor Nicholas R Thomson Wellcome Trust Sanger Institute United Kingdom
Dr Chrispin Chaguza Wellcome Trust Sanger Institute United Kingdom
Dr Chisomo Msefula College of Medicine, University of Malawi Malawi
MacKenzie KD, Wang Y, Musicha P, Hansen EG, Palmer MB, Herman DJ, Feasey NA, White AP. 2019. Parallel evolution leading to impaired biofilm formation in invasive Salmonella strains. PLoS Genet, 15 (6), pp. e1008233. | Show Abstract | Read more

Pathogenic Salmonella strains that cause gastroenteritis are able to colonize and replicate within the intestines of multiple host species. In general, these strains have retained an ability to form the rdar morphotype, a resistant biofilm physiology hypothesized to be important for Salmonella transmission. In contrast, Salmonella strains that are host-adapted or even host-restricted like Salmonella enterica serovar Typhi, tend to cause systemic infections and have lost the ability to form the rdar morphotype. Here, we investigated the rdar morphotype and CsgD-regulated biofilm formation in two non-typhoidal Salmonella (NTS) strains that caused invasive disease in Malawian children, S. Typhimurium D23580 and S. Enteritidis D7795, and compared them to a panel of NTS strains associated with gastroenteritis, as well as S. Typhi strains. Sequence comparisons combined with luciferase reporter technology identified key SNPs in the promoter region of csgD that either shut off biofilm formation completely (D7795) or reduced transcription of this key biofilm regulator (D23580). Phylogenetic analysis showed that these SNPs are conserved throughout the African clades of invasive isolates, dating as far back as 80 years ago. S. Typhi isolates were negative for the rdar morphotype due to truncation of eight amino acids from the C-terminus of CsgD. We present new evidence in support of parallel evolution between lineages of nontyphoidal Salmonella associated with invasive disease in Africa and the archetypal host-restricted invasive serovar; S. Typhi. We hypothesize that the African invasive isolates are becoming human-adapted and 'niche specialized' with less reliance on environmental survival, as compared to gastroenteritis-causing isolates.

Chaguza C, Heinsbroek E, Gladstone RA, Tafatatha T, Alaerts M, Peno C, Cornick JE, Musicha P, Bar-Zeev N, Kamng'ona A et al. 2019. Early signals of vaccine driven perturbation seen in pneumococcal carriage population genomic data. Clin Infect Dis, | Show Abstract | Read more

BACKGROUND: Pneumococcal conjugate vaccines (PCV) have reduced pneumococcal diseases globally. Pneumococcal genomic surveys elucidate PCV effects on population structure but are rarely conducted in low-income settings despite the high disease burden. METHODS: We undertook whole genome sequencing of 660 pneumococcal isolates collected through surveys from healthy carriers two years from PCV14 introduction and one-year post-rollout in northern Malawi. We investigated changes in population structure, within-lineage serotype dynamics, serotype diversity, and frequency of antibiotic resistance (ABR) and accessory genes. RESULTS: In the under-fives, frequency and diversity of vaccine serotypes (VT) decreased significantly post-PCV but no significant changes occurred in over-fives. Clearance of VT serotypes was consistent across different genetic backgrounds (lineages). There was an increase of non-vaccine serotypes (NVT) namely 7C, 15B/C, 23A in under-fives but 28F increased in both age groups. While carriage rates have been recently shown to remain stable post-PCV due replacement serotypes, there was no change in diversity of NVTs. Additionally, frequency of intermediate-penicillin-resistant lineages decreased post-PCV. While frequency of ABR genes remained stable, other accessory genes especially those associated with MGEs and bacteriocins showed changes in frequency post-PCV. CONCLUSIONS: We demonstrate evidence of significant population restructuring post-PCV driven by decreasing frequency of vaccine serotypes and increasing frequency of few NVTs mainly in under-fives. Continued surveillance with WGS remains crucial to fully understand dynamics of the residual VTs and replacement NVT serotypes post-PCV.

Fadlelmola FM, Panji S, Ahmed AE, Ghouila A, Akurugu WA, Domelevo Entfellner J-B, Souiai O, Mulder N, H3ABioNet Research working group as members of the H3Africa Consortium. 2019. Ten simple rules for organizing a webinar series. PLoS Comput Biol, 15 (4), pp. e1006671. | Read more

Musicha P, Msefula CL, Mather AE, Chaguza C, Cain AK, Peno C, Kallonen T, Khonga M, Denis B, Gray KJ et al. 2019. Genomic analysis of Klebsiella pneumoniae isolates from Malawi reveals acquisition of multiple ESBL determinants across diverse lineages. J Antimicrob Chemother, | Show Abstract | Read more

OBJECTIVES: ESBL-producing Klebsiella pneumoniae (KPN) pose a major threat to human health globally. We carried out a WGS study to understand the genetic background of ESBL-producing KPN in Malawi and place them in the context of other global isolates. METHODS: We sequenced genomes of 72 invasive and carriage KPN isolates collected from patients admitted to Queen Elizabeth Central Hospital, Blantyre, Malawi. We performed phylogenetic and population structure analyses on these and previously published genomes from Kenya (n = 66) and from outside sub-Saharan Africa (n = 67). We screened for presence of antimicrobial resistance (AMR) genetic determinants and carried out association analyses by genomic sequence cluster, AMR phenotype and time. RESULTS: Malawian isolates fit within the global population structure of KPN, clustering into the major lineages of KpI, KpII and KpIII. KpI isolates from Malawi were more related to those from Kenya, with both collections exhibiting more clonality than isolates from the rest of the world. We identified multiple ESBL genes, including blaCTX-M-15, several blaSHV, blaTEM-63 and blaOXA-10, and other AMR genes, across diverse lineages of the KPN isolates from Malawi. No carbapenem resistance genes were detected; however, we detected IncFII and IncFIB plasmids that were similar to the carbapenem resistance-associated plasmid pNDM-mar. CONCLUSIONS: There are multiple ESBL genes across diverse KPN lineages in Malawi and plasmids in circulation that are capable of carrying carbapenem resistance. Unless appropriate interventions are rapidly put in place, these may lead to a high burden of locally untreatable infection in vulnerable populations.

Williams CT, Musicha P, Feasey NA, Adams ER, Edwards T. 2019. ChloS-HRM, a novel assay to identify chloramphenicol-susceptible Escherichia coli and Klebsiella pneumoniae in Malawi. J Antimicrob Chemother, | Show Abstract | Read more

Objectives: Chloramphenicol is a broad-spectrum antimicrobial widely available in sub-Saharan Africa. With susceptibility re-emerging among Enterobacteriaceae in Blantyre, Malawi, we designed and evaluated a new high-resolution melt (HRM) RT-PCR assay, ChloS-HRM, to identify chloramphenicol-susceptible infections in a hospital setting. Methods: Seventy-two previously whole-genome sequenced isolates of Escherichia coli and Klebsiella pneumoniae from the Queen Elizabeth Central Hospital, Malawi, were subjected to determination of chloramphenicol MICs. Primers were designed to detect 18 chloramphenicol resistance genes that produce seven distinct peaks correlating with different gene groups (catA1, catA2, catA3, catB2, catB group 3, cmlA and floR) following HRM analysis. ChloS-HRM results were compared with MIC and WGS results. Results: ChloS-HRM correctly identified 15 of 17 phenotypically susceptible isolates and 54 of 55 resistant isolates, giving an accuracy of 88% in identifying susceptibility and 98% in identifying resistance. WGS identified 16 of 17 susceptible and 54 of 55 resistant isolates, giving an accuracy of 94% in identifying susceptibility and 98% in identifying resistance. The single false-susceptible result had no detectable gene by ChloS-HRM or WGS. Compared with WGS, ChloS-HRM had 100% sensitivity and specificity for catA (catA1-3), cmlA and floR, and 96% specificity for catB; sensitivity could not be estimated due to the lack of catB in the clinical sample collection. The overall agreement between MIC and HRM was 96% and between MIC and WGS it was 97%. Conclusions: ChloS-HRM could support antimicrobial stewardship in enabling de-escalation from third-generation cephalosporins by identifying chloramphenicol-susceptible infections. This would be valuable in areas with chloramphenicol-susceptible MDR and XDR Enterobacteriaceae.

Iroh Tam P-Y, Musicha P, Kawaza K, Cornick J, Denis B, Freyne B, Everett D, Dube Q, French N, Feasey N, Heyderman R. 2019. Emerging Resistance to Empiric Antimicrobial Regimens for Pediatric Bloodstream Infections in Malawi (1998-2017). Clin Infect Dis, 69 (1), pp. 61-68. | Show Abstract | Read more

BACKGROUND: The adequacy of the World Health Organization's Integrated Management of Childhood Illness (IMCI) antimicrobial guidelines for the treatment of suspected severe bacterial infections is dependent on a low prevalence of antimicrobial resistance (AMR). We describe trends in etiologies and susceptibility patterns of bloodstream infections (BSI) in hospitalized children in Malawi. METHODS: We determined the change in the population-based incidence of BSI in children admitted to Queen Elizabeth Central Hospital, Blantyre, Malawi (1998-2017). AMR profiles were assessed by the disc diffusion method, and trends over time were evaluated. RESULTS: A total 89643 pediatric blood cultures were performed, and 10621 pathogens were included in the analysis. Estimated minimum incidence rates of BSI for those ≤5 years of age fell from a peak of 11.4 per 1000 persons in 2002 to 3.4 per 1000 persons in 2017. Over 2 decades, the resistance of Gram-negative pathogens to all empiric, first-line antimicrobials (ampicillin/penicillin, gentamicin, ceftriaxone) among children ≤5 years increased from 3.4% to 30.2% (P < .001). Among those ≤60 days, AMR to all first-line antimicrobials increased from 7.0% to 67.7% (P < .001). Among children ≤5 years, Klebsiella spp. resistance to all first-line antimicrobial regimens increased from 5.9% to 93.7% (P < .001). CONCLUSIONS: The incidence of BSI among hospitalized children has decreased substantially over the last 20 years, although gains have been offset by increases in Gram-negative pathogens' resistance to all empiric first-line antimicrobials. There is an urgent need to address the broader challenge of adapting IMCI guidelines to the local setting in the face of rapidly-expanding AMR in childhood BSI.

Ghouila A, Siwo GH, Entfellner J-BD, Panji S, Button-Simons KA, Davis SZ, Fadlelmola FM, DREAM of Malaria Hackathon Participants, Ferdig MT, Mulder N. 2018. Hackathons as a means of accelerating scientific discoveries and knowledge transfer. Genome Res, 28 (5), pp. 759-765. | Show Abstract | Read more

Scientific research plays a key role in the advancement of human knowledge and pursuit of solutions to important societal challenges. Typically, research occurs within specific institutions where data are generated and subsequently analyzed. Although collaborative science bringing together multiple institutions is now common, in such collaborations the analytical processing of the data is often performed by individual researchers within the team, with only limited internal oversight and critical analysis of the workflow prior to publication. Here, we show how hackathons can be a means of enhancing collaborative science by enabling peer review before results of analyses are published by cross-validating the design of studies or underlying data sets and by driving reproducibility of scientific analyses. Traditionally, in data analysis processes, data generators and bioinformaticians are divided and do not collaborate on analyzing the data. Hackathons are a good strategy to build bridges over the traditional divide and are potentially a great agile extension to the more structured collaborations between multiple investigators and institutions.

Maze MJ, Bassat Q, Feasey NA, Mandomando I, Musicha P, Crump JA. 2018. The epidemiology of febrile illness in sub-Saharan Africa: implications for diagnosis and management. Clin Microbiol Infect, 24 (8), pp. 808-814. | Show Abstract | Read more

BACKGROUND: Fever is among the most common symptoms of people living in Africa, and clinicians are challenged by the similar clinical features of a wide spectrum of potential aetiologies. AIM: To summarize recent studies of fever aetiology in sub-Saharan Africa focusing on causes other than malaria. SOURCES: A narrative literature review by searching the MEDLINE database, and recent conference abstracts. CONTENT: Studies of multiple potential causes of fever are scarce, and for many participants the infecting organism remains unidentified, or multiple co-infecting microorganisms are identified, and establishing causation is challenging. Among ambulatory patients, self-limiting arboviral infections and viral upper respiratory infections are common, occurring in up to 60% of children attending health centres. Among hospitalized patients there is a high prevalence of potentially fatal infections requiring specific treatment. Bacterial bloodstream infection and bacterial zoonoses are major causes of fever. In recent years, the prevalence of antimicrobial resistance among bacterial isolates has increased, notably with spread of extended spectrum β-lactamase-producing Enterobacteriaceae and fluoroquinolone-resistant Salmonella enterica. Among those with human immunodeficiency virus (HIV) infection, Mycobacterium tuberculosis bacteraemia has been confirmed in up to 34.8% of patients with sepsis, and fungal infections such as cryptococcosis and histoplasmosis remain important. IMPLICATIONS: Understanding the local epidemiology of fever aetiology, and the use of diagnostics including malaria and HIV rapid-diagnostic tests, guides healthcare workers in the management of patients with fever. Current challenges for clinicians include assessing which ambulatory patients require antibacterial drugs, and identifying hospitalized patients infected with organisms that are not susceptible to empiric antibacterial regimens.

Jambo KC, Tembo DL, Kamng'ona AW, Musicha P, Banda DH, Kankwatira AM, Malamba RD, Allain TJ, Heyderman RS, Russell DG, Mwandumba HC. 2017. HIV-associated disruption of lung cytokine networks is incompletely restored in asymptomatic HIV-infected Malawian adults on antiretroviral therapy. ERJ Open Res, 3 (4), pp. 00097-2017. | Show Abstract | Read more

Disruption of lung cytokine networks during chronic HIV infection is incompletely restored in individuals on antiretroviral therapy.

Musicha P, Cornick JE, Bar-Zeev N, French N, Masesa C, Denis B, Kennedy N, Mallewa J, Gordon MA, Msefula CL et al. 2017. Trends in antimicrobial resistance in bloodstream infection isolates at a large urban hospital in Malawi (1998-2016): a surveillance study. Lancet Infect Dis, 17 (10), pp. 1042-1052. | Show Abstract | Read more

BACKGROUND: Bacterial bloodstream infection is a common cause of morbidity and mortality in sub-Saharan Africa, yet few facilities are able to maintain long-term surveillance. The Malawi-Liverpool-Wellcome Trust Clinical Research Programme has done sentinel surveillance of bacteraemia since 1998. We report long-term trends in bloodstream infection and antimicrobial resistance from this surveillance. METHODS: In this surveillance study, we analysed blood cultures that were routinely taken from adult and paediatric patients with fever or suspicion of sepsis admitted to Queen Elizabeth Central Hospital, Blantyre, Malawi from 1998 to 2016. The hospital served an urban population of 920 000 in 2016, with 1000 beds, although occupancy often exceeds capacity. The hospital admits about 10 000 adults and 30 000 children each year. Antimicrobial susceptibility tests were done by the disc diffusion method according to British Society of Antimicrobial Chemotherapy guidelines. We used the Cochran-Armitage test for trend to examine trends in rates of antimicrobial resistance, and negative binomial regression to examine trends in icidence of bloodstream infection over time. FINDINGS: Between Jan 1, 1998, and Dec 31, 2016, we isolated 29 183 pathogens from 194 539 blood cultures. Pathogen detection decreased significantly from 327·1/100 000 in 1998 to 120·2/100 000 in 2016 (p<0·0001). 13 366 (51·1%) of 26 174 bacterial isolates were resistant to the Malawian first-line antibiotics amoxicillin or penicillin, chloramphenicol, and co-trimoxazole; 68·3% of Gram-negative and 6·6% of Gram-positive pathogens. The proportions of non-Salmonella Enterobacteriaceae with extended spectrum beta-lactamase (ESBL) or fluoroquinolone resistance rose significantly after 2003 to 61·9% in 2016 (p<0·0001). Between 2003 and 2016, ESBL resistance rose from 0·7% to 30·3% in Escherichia coli, from 11·8% to 90·5% in Klebsiella spp and from 30·4% to 71·9% in other Enterobacteriaceae. Similarly, resistance to ciprofloxacin rose from 2·5% to 31·1% in E coli, from 1·7% to 70·2% in Klebsiella spp and from 5·9% to 68·8% in other Enterobacteriaceae. By contrast, more than 92·0% of common Gram-positive pathogens remain susceptible to either penicillin or chloramphenicol. Meticillin-resistant Staphylococcus aureus (MRSA) was first reported in 1998 at 7·7% and represented 18·4% of S aureus isolates in 2016. INTERPRETATION: The rapid expansion of ESBL and fluoroquinolone resistance among common Gram-negative pathogens, and the emergence of MRSA, highlight the growing challenge of bloodstream infections that are effectively impossible to treat in this resource-limited setting. FUNDING: Wellcome Trust, H3ABionet, Southern Africa Consortium for Research Excellence (SACORE).

Chaguza C, Cornick JE, Andam CP, Gladstone RA, Alaerts M, Musicha P, Peno C, Bar-Zeev N, Kamng'ona AW, Kiran AM et al. 2017. Population genetic structure, antibiotic resistance, capsule switching and evolution of invasive pneumococci before conjugate vaccination in Malawi. Vaccine, 35 (35 Pt B), pp. 4594-4602. | Show Abstract | Read more

INTRODUCTION: Pneumococcal infections cause a high death toll in Sub Saharan Africa (SSA) but the recently rolled out pneumococcal conjugate vaccines (PCV) will reduce the disease burden. To better understand the population impact of these vaccines, comprehensive analysis of large collections of pneumococcal isolates sampled prior to vaccination is required. Here we present a population genomic study of the invasive pneumococcal isolates sampled before the implementation of PCV13 in Malawi. MATERIALS AND METHODS: We retrospectively sampled and whole genome sequenced 585 invasive isolates from 2004 to 2010. We determine the pneumococcal population genetic structure and assessed serotype prevalence, antibiotic resistance rates, and the occurrence of serotype switching. RESULTS: Population structure analysis revealed 22 genetically distinct sequence clusters (SCs), which consisted of closely related isolates. Serotype 1 (ST217), a vaccine-associated serotype in clade SC2, showed highest prevalence (19.3%), and was associated with the highest MDR rate (81.9%) followed by serotype 12F, a non-vaccine serotype in clade SC10 with an MDR rate of 57.9%. Prevalence of serotypes was stable prior to vaccination although there was an increase in the PMEN19 clone, serotype 5 ST289, in clade SC1 in 2010 suggesting a potential undetected local outbreak. Coalescent analysis revealed recent emergence of the SCs and there was evidence of natural capsule switching in the absence of vaccine induced selection pressure. Furthermore, majority of the highly prevalent capsule-switched isolates were associated with acquisition of vaccine-targeted capsules. CONCLUSIONS: This study provides descriptions of capsule-switched serotypes and serotypes with potential to cause serotype replacement post-vaccination such as 12F. Continued surveillance is critical to monitor these serotypes and antibiotic resistance in order to design better infection prevention and control measures such as inclusion of emerging replacement serotypes in future conjugate vaccines.

Musicha P, Feasey NA, Cain AK, Kallonen T, Chaguza C, Peno C, Khonga M, Thompson S, Gray KJ, Mather AE et al. 2017. Genomic landscape of extended-spectrum β-lactamase resistance in Escherichia coli from an urban African setting. J Antimicrob Chemother, 72 (6), pp. 1602-1609. | Show Abstract | Read more

Objectives: Efforts to treat Escherichia coli infections are increasingly being compromised by the rapid, global spread of antimicrobial resistance (AMR). Whilst AMR in E. coli has been extensively investigated in resource-rich settings, in sub-Saharan Africa molecular patterns of AMR are not well described. In this study, we have begun to explore the population structure and molecular determinants of AMR amongst E. coli isolates from Malawi. Methods: Ninety-four E. coli isolates from patients admitted to Queen's Hospital, Malawi, were whole-genome sequenced. The isolates were selected on the basis of diversity of phenotypic resistance profiles and clinical source of isolation (blood, CSF and rectal swab). Sequence data were analysed using comparative genomics and phylogenetics. Results: Our results revealed the presence of five clades, which were strongly associated with E. coli phylogroups A, B1, B2, D and F. We identified 43 multilocus STs, of which ST131 (14.9%) and ST12 (9.6%) were the most common. We identified 25 AMR genes. The most common ESBL gene was bla CTX-M-15 and it was present in all five phylogroups and 11 STs, and most commonly detected in ST391 (4/4 isolates), ST648 (3/3 isolates) and ST131 [3/14 (21.4%) isolates]. Conclusions: This study has revealed a high diversity of lineages associated with AMR, including ESBL and fluoroquinolone resistance, in Malawi. The data highlight the value of longitudinal bacteraemia surveillance coupled with detailed molecular epidemiology in all settings, including low-income settings, in describing the global epidemiology of ESBL resistance.

Mulder NJ, Adebiyi E, Alami R, Benkahla A, Brandful J, Doumbia S, Everett D, Fadlelmola FM, Gaboun F, Gaseitsiwe S et al. 2016. H3ABioNet, a sustainable pan-African bioinformatics network for human heredity and health in Africa. Genome Res, 26 (2), pp. 271-277. | Show Abstract | Read more

The application of genomics technologies to medicine and biomedical research is increasing in popularity, made possible by new high-throughput genotyping and sequencing technologies and improved data analysis capabilities. Some of the greatest genetic diversity among humans, animals, plants, and microbiota occurs in Africa, yet genomic research outputs from the continent are limited. The Human Heredity and Health in Africa (H3Africa) initiative was established to drive the development of genomic research for human health in Africa, and through recognition of the critical role of bioinformatics in this process, spurred the establishment of H3ABioNet, a pan-African bioinformatics network for H3Africa. The limitations in bioinformatics capacity on the continent have been a major contributory factor to the lack of notable outputs in high-throughput biology research. Although pockets of high-quality bioinformatics teams have existed previously, the majority of research institutions lack experienced faculty who can train and supervise bioinformatics students. H3ABioNet aims to address this dire need, specifically in the area of human genetics and genomics, but knock-on effects are ensuring this extends to other areas of bioinformatics. Here, we describe the emergence of genomics research and the development of bioinformatics in Africa through H3ABioNet.

MacKenzie KD, Wang Y, Musicha P, Hansen EG, Palmer MB, Herman DJ, Feasey NA, White AP. 2019. Parallel evolution leading to impaired biofilm formation in invasive Salmonella strains. PLoS Genet, 15 (6), pp. e1008233. | Show Abstract | Read more

Pathogenic Salmonella strains that cause gastroenteritis are able to colonize and replicate within the intestines of multiple host species. In general, these strains have retained an ability to form the rdar morphotype, a resistant biofilm physiology hypothesized to be important for Salmonella transmission. In contrast, Salmonella strains that are host-adapted or even host-restricted like Salmonella enterica serovar Typhi, tend to cause systemic infections and have lost the ability to form the rdar morphotype. Here, we investigated the rdar morphotype and CsgD-regulated biofilm formation in two non-typhoidal Salmonella (NTS) strains that caused invasive disease in Malawian children, S. Typhimurium D23580 and S. Enteritidis D7795, and compared them to a panel of NTS strains associated with gastroenteritis, as well as S. Typhi strains. Sequence comparisons combined with luciferase reporter technology identified key SNPs in the promoter region of csgD that either shut off biofilm formation completely (D7795) or reduced transcription of this key biofilm regulator (D23580). Phylogenetic analysis showed that these SNPs are conserved throughout the African clades of invasive isolates, dating as far back as 80 years ago. S. Typhi isolates were negative for the rdar morphotype due to truncation of eight amino acids from the C-terminus of CsgD. We present new evidence in support of parallel evolution between lineages of nontyphoidal Salmonella associated with invasive disease in Africa and the archetypal host-restricted invasive serovar; S. Typhi. We hypothesize that the African invasive isolates are becoming human-adapted and 'niche specialized' with less reliance on environmental survival, as compared to gastroenteritis-causing isolates.

Musicha P, Msefula CL, Mather AE, Chaguza C, Cain AK, Peno C, Kallonen T, Khonga M, Denis B, Gray KJ et al. 2019. Genomic analysis of Klebsiella pneumoniae isolates from Malawi reveals acquisition of multiple ESBL determinants across diverse lineages. J Antimicrob Chemother, | Show Abstract | Read more

OBJECTIVES: ESBL-producing Klebsiella pneumoniae (KPN) pose a major threat to human health globally. We carried out a WGS study to understand the genetic background of ESBL-producing KPN in Malawi and place them in the context of other global isolates. METHODS: We sequenced genomes of 72 invasive and carriage KPN isolates collected from patients admitted to Queen Elizabeth Central Hospital, Blantyre, Malawi. We performed phylogenetic and population structure analyses on these and previously published genomes from Kenya (n = 66) and from outside sub-Saharan Africa (n = 67). We screened for presence of antimicrobial resistance (AMR) genetic determinants and carried out association analyses by genomic sequence cluster, AMR phenotype and time. RESULTS: Malawian isolates fit within the global population structure of KPN, clustering into the major lineages of KpI, KpII and KpIII. KpI isolates from Malawi were more related to those from Kenya, with both collections exhibiting more clonality than isolates from the rest of the world. We identified multiple ESBL genes, including blaCTX-M-15, several blaSHV, blaTEM-63 and blaOXA-10, and other AMR genes, across diverse lineages of the KPN isolates from Malawi. No carbapenem resistance genes were detected; however, we detected IncFII and IncFIB plasmids that were similar to the carbapenem resistance-associated plasmid pNDM-mar. CONCLUSIONS: There are multiple ESBL genes across diverse KPN lineages in Malawi and plasmids in circulation that are capable of carrying carbapenem resistance. Unless appropriate interventions are rapidly put in place, these may lead to a high burden of locally untreatable infection in vulnerable populations.

Maze MJ, Bassat Q, Feasey NA, Mandomando I, Musicha P, Crump JA. 2018. The epidemiology of febrile illness in sub-Saharan Africa: implications for diagnosis and management. Clin Microbiol Infect, 24 (8), pp. 808-814. | Show Abstract | Read more

BACKGROUND: Fever is among the most common symptoms of people living in Africa, and clinicians are challenged by the similar clinical features of a wide spectrum of potential aetiologies. AIM: To summarize recent studies of fever aetiology in sub-Saharan Africa focusing on causes other than malaria. SOURCES: A narrative literature review by searching the MEDLINE database, and recent conference abstracts. CONTENT: Studies of multiple potential causes of fever are scarce, and for many participants the infecting organism remains unidentified, or multiple co-infecting microorganisms are identified, and establishing causation is challenging. Among ambulatory patients, self-limiting arboviral infections and viral upper respiratory infections are common, occurring in up to 60% of children attending health centres. Among hospitalized patients there is a high prevalence of potentially fatal infections requiring specific treatment. Bacterial bloodstream infection and bacterial zoonoses are major causes of fever. In recent years, the prevalence of antimicrobial resistance among bacterial isolates has increased, notably with spread of extended spectrum β-lactamase-producing Enterobacteriaceae and fluoroquinolone-resistant Salmonella enterica. Among those with human immunodeficiency virus (HIV) infection, Mycobacterium tuberculosis bacteraemia has been confirmed in up to 34.8% of patients with sepsis, and fungal infections such as cryptococcosis and histoplasmosis remain important. IMPLICATIONS: Understanding the local epidemiology of fever aetiology, and the use of diagnostics including malaria and HIV rapid-diagnostic tests, guides healthcare workers in the management of patients with fever. Current challenges for clinicians include assessing which ambulatory patients require antibacterial drugs, and identifying hospitalized patients infected with organisms that are not susceptible to empiric antibacterial regimens.

Jambo KC, Tembo DL, Kamng'ona AW, Musicha P, Banda DH, Kankwatira AM, Malamba RD, Allain TJ, Heyderman RS, Russell DG, Mwandumba HC. 2017. HIV-associated disruption of lung cytokine networks is incompletely restored in asymptomatic HIV-infected Malawian adults on antiretroviral therapy. ERJ Open Res, 3 (4), pp. 00097-2017. | Show Abstract | Read more

Disruption of lung cytokine networks during chronic HIV infection is incompletely restored in individuals on antiretroviral therapy.

Musicha P, Cornick JE, Bar-Zeev N, French N, Masesa C, Denis B, Kennedy N, Mallewa J, Gordon MA, Msefula CL et al. 2017. Trends in antimicrobial resistance in bloodstream infection isolates at a large urban hospital in Malawi (1998-2016): a surveillance study. Lancet Infect Dis, 17 (10), pp. 1042-1052. | Show Abstract | Read more

BACKGROUND: Bacterial bloodstream infection is a common cause of morbidity and mortality in sub-Saharan Africa, yet few facilities are able to maintain long-term surveillance. The Malawi-Liverpool-Wellcome Trust Clinical Research Programme has done sentinel surveillance of bacteraemia since 1998. We report long-term trends in bloodstream infection and antimicrobial resistance from this surveillance. METHODS: In this surveillance study, we analysed blood cultures that were routinely taken from adult and paediatric patients with fever or suspicion of sepsis admitted to Queen Elizabeth Central Hospital, Blantyre, Malawi from 1998 to 2016. The hospital served an urban population of 920 000 in 2016, with 1000 beds, although occupancy often exceeds capacity. The hospital admits about 10 000 adults and 30 000 children each year. Antimicrobial susceptibility tests were done by the disc diffusion method according to British Society of Antimicrobial Chemotherapy guidelines. We used the Cochran-Armitage test for trend to examine trends in rates of antimicrobial resistance, and negative binomial regression to examine trends in icidence of bloodstream infection over time. FINDINGS: Between Jan 1, 1998, and Dec 31, 2016, we isolated 29 183 pathogens from 194 539 blood cultures. Pathogen detection decreased significantly from 327·1/100 000 in 1998 to 120·2/100 000 in 2016 (p<0·0001). 13 366 (51·1%) of 26 174 bacterial isolates were resistant to the Malawian first-line antibiotics amoxicillin or penicillin, chloramphenicol, and co-trimoxazole; 68·3% of Gram-negative and 6·6% of Gram-positive pathogens. The proportions of non-Salmonella Enterobacteriaceae with extended spectrum beta-lactamase (ESBL) or fluoroquinolone resistance rose significantly after 2003 to 61·9% in 2016 (p<0·0001). Between 2003 and 2016, ESBL resistance rose from 0·7% to 30·3% in Escherichia coli, from 11·8% to 90·5% in Klebsiella spp and from 30·4% to 71·9% in other Enterobacteriaceae. Similarly, resistance to ciprofloxacin rose from 2·5% to 31·1% in E coli, from 1·7% to 70·2% in Klebsiella spp and from 5·9% to 68·8% in other Enterobacteriaceae. By contrast, more than 92·0% of common Gram-positive pathogens remain susceptible to either penicillin or chloramphenicol. Meticillin-resistant Staphylococcus aureus (MRSA) was first reported in 1998 at 7·7% and represented 18·4% of S aureus isolates in 2016. INTERPRETATION: The rapid expansion of ESBL and fluoroquinolone resistance among common Gram-negative pathogens, and the emergence of MRSA, highlight the growing challenge of bloodstream infections that are effectively impossible to treat in this resource-limited setting. FUNDING: Wellcome Trust, H3ABionet, Southern Africa Consortium for Research Excellence (SACORE).

Chaguza C, Cornick JE, Andam CP, Gladstone RA, Alaerts M, Musicha P, Peno C, Bar-Zeev N, Kamng'ona AW, Kiran AM et al. 2017. Population genetic structure, antibiotic resistance, capsule switching and evolution of invasive pneumococci before conjugate vaccination in Malawi. Vaccine, 35 (35 Pt B), pp. 4594-4602. | Show Abstract | Read more

INTRODUCTION: Pneumococcal infections cause a high death toll in Sub Saharan Africa (SSA) but the recently rolled out pneumococcal conjugate vaccines (PCV) will reduce the disease burden. To better understand the population impact of these vaccines, comprehensive analysis of large collections of pneumococcal isolates sampled prior to vaccination is required. Here we present a population genomic study of the invasive pneumococcal isolates sampled before the implementation of PCV13 in Malawi. MATERIALS AND METHODS: We retrospectively sampled and whole genome sequenced 585 invasive isolates from 2004 to 2010. We determine the pneumococcal population genetic structure and assessed serotype prevalence, antibiotic resistance rates, and the occurrence of serotype switching. RESULTS: Population structure analysis revealed 22 genetically distinct sequence clusters (SCs), which consisted of closely related isolates. Serotype 1 (ST217), a vaccine-associated serotype in clade SC2, showed highest prevalence (19.3%), and was associated with the highest MDR rate (81.9%) followed by serotype 12F, a non-vaccine serotype in clade SC10 with an MDR rate of 57.9%. Prevalence of serotypes was stable prior to vaccination although there was an increase in the PMEN19 clone, serotype 5 ST289, in clade SC1 in 2010 suggesting a potential undetected local outbreak. Coalescent analysis revealed recent emergence of the SCs and there was evidence of natural capsule switching in the absence of vaccine induced selection pressure. Furthermore, majority of the highly prevalent capsule-switched isolates were associated with acquisition of vaccine-targeted capsules. CONCLUSIONS: This study provides descriptions of capsule-switched serotypes and serotypes with potential to cause serotype replacement post-vaccination such as 12F. Continued surveillance is critical to monitor these serotypes and antibiotic resistance in order to design better infection prevention and control measures such as inclusion of emerging replacement serotypes in future conjugate vaccines.

Musicha P, Feasey NA, Cain AK, Kallonen T, Chaguza C, Peno C, Khonga M, Thompson S, Gray KJ, Mather AE et al. 2017. Genomic landscape of extended-spectrum β-lactamase resistance in Escherichia coli from an urban African setting. J Antimicrob Chemother, 72 (6), pp. 1602-1609. | Show Abstract | Read more

Objectives: Efforts to treat Escherichia coli infections are increasingly being compromised by the rapid, global spread of antimicrobial resistance (AMR). Whilst AMR in E. coli has been extensively investigated in resource-rich settings, in sub-Saharan Africa molecular patterns of AMR are not well described. In this study, we have begun to explore the population structure and molecular determinants of AMR amongst E. coli isolates from Malawi. Methods: Ninety-four E. coli isolates from patients admitted to Queen's Hospital, Malawi, were whole-genome sequenced. The isolates were selected on the basis of diversity of phenotypic resistance profiles and clinical source of isolation (blood, CSF and rectal swab). Sequence data were analysed using comparative genomics and phylogenetics. Results: Our results revealed the presence of five clades, which were strongly associated with E. coli phylogroups A, B1, B2, D and F. We identified 43 multilocus STs, of which ST131 (14.9%) and ST12 (9.6%) were the most common. We identified 25 AMR genes. The most common ESBL gene was bla CTX-M-15 and it was present in all five phylogroups and 11 STs, and most commonly detected in ST391 (4/4 isolates), ST648 (3/3 isolates) and ST131 [3/14 (21.4%) isolates]. Conclusions: This study has revealed a high diversity of lineages associated with AMR, including ESBL and fluoroquinolone resistance, in Malawi. The data highlight the value of longitudinal bacteraemia surveillance coupled with detailed molecular epidemiology in all settings, including low-income settings, in describing the global epidemiology of ESBL resistance.

3395